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Example : image classification in remote sensing

Image classification for land-use mapping

I Zurich, Switzerland

I 4 spectral bands

I 9 landuse classes

I (329 × 347 × 4)
datacube Image (4 bands) Labels examples

Features used in literature (parameters)

I Raw features (band)

I Morphological
[4](opening/closing,shape,size,angle)

I Texture [5](mean/entropy/std,size)

I Attribute [6](area/diagonal/std)



Learning the feature extraction

Multiple-Kernel Learning [1]
The Good:

I Prediction performances.

I Learning of the feature extraction.

The Bad:

I Complexity (number of examples)

→ Low rank kernels [3].

The Ugly:

I Fixed number of kernels.

→ Infinite Kernel Learning [2].

Our approach

I Learn a linear classifier jointly with the feature extraction.

I Select a finite number of feature among many using sparsity
promoting regularization.
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Notations

I F the set of all possible finite subset of features

I ϕ an element of F composed of d features {Φθj}di=1, with θ being
the feature parameter

I For an optimal ϕ? with optimal parameters {θ?j }, the decision
function writes:

f(x) =
∑
j=1

wjΦθ?j (x) = wTΦθ(x)

Examples of continuously parametrized features

I Wavelet or Gabor based features of the form 〈x, ψj,k,θ〉 or
〈x, ψu,v,σ,λ〉

I Explicit features for kernel approximation of

k(x,x′) = e
−

∑
j

(xj−x
′
j)

2

2σ2
j



Optimization problem

Formulation

min
ϕ∈F

min
w

n∑
i=1

L(yi,w
TΦθ(xi)) + λΩ(w)

I L(·, ·) convex and differentiable loss function

I Ω(·) norm based sparsity-inducing regularizers

I λ : trade-off hyperparameter

Discussion

I Two-step optimization, bi-level optimization

I ERM with finite feature set ϕ

I Optimization over the feature set



Optimality conditions for Ω(w) = ‖w‖1
Inner problem (restricted master):∑

i Φθj (xi)L
′(yi,w

TΦθ(xi)) + λsign(wj) = 0 if wj 6= 0∣∣∑
i Φθj (xi)L

′(yi,w
TΦθ(xi))

∣∣ ≤ λ if wj = 0 and Φθ ∈ ϕ

Full problem:

∑
i Φθj (xi)L

′(yi,w
TΦθj (xi)) + λsign(wj) = 0 if wj 6= 0∣∣∑

i Φθj (xi)L
′(yi,w

TΦθ(xi))
∣∣ ≤ λ if wj = 0 and Φθj ∈ ϕ∣∣∑

i Φ(xi)L
′(yi,w

TΦθ(xi))
∣∣ ≤ λ if Φ 6∈ ϕ

Remarks

I ≤ λ constraint measure an alignement between a feature and the
residue.

I Any feature Φ 6∈ ϕ violation the last constraint would lead to a
decrease of the objective function if added to ϕ.

I Suggests the use of an active set algorithm.



Optimization algorithm

Active set algorithm

I Train the restricted master with a finite set of feature ϕ

I Select one feature φ violating constraints and update ϕ : ϕ← ϕ∪ φ
I Loop until convergence.

Practical problem

I Optimality of the full problem
checked through

maxΦ6∈ϕ
∣∣∑

i Φ(xi)L
′(yi,w

TΦθ(xi))
∣∣

I Depending on L(·, ·) and the
structure of Φθ, the problem can
be very difficult.

Searching for the feature

I Randomization, brute force, or
clever search if applicable

I Sample some values of θ
I Select the feature that

maximizes constraint
violation.

I sub-optimal but efficient

I ε-approximate solution in a finite
time.



Solving the restricted master

Problem with square hinge loss

min
w

n∑
i=1

max(0, 1− yiwTΦθ(xi))
2 + λΩ(w)

Forward-Backward Splitting

I Use the proximal of Ω(·)
I Squared hinge loss

differentiable and Gradient
Lipschitz.

I Can be accelerated [7]

Alternating Direction Method of
Multipliers

I Use the proximal of Ω(·) and
squared hinge loss

I variable splitting + Augmented
Lagrangian [8].

I Include second order information



Extensions to other paradigms

Non-differentiable norm-based regularization term Ω(w)
The violating constraint condition becomes

Ω?

(∑
i

Φ(xi)L
′(yi,w

TΦθj (xi))

)
≤ λ

with Ω?(w) being the dual norm of Ω(w).

Multi-task with shared features
`1 − `q mixed-norm whose dual is
`∞ − `q′

‖W‖1,q =

d∑
i=1

‖W·,t‖q

Dirty multitask
Shared features + mean classifier

Ω(W, w̄) = ‖W‖1,q + λm‖w̄‖1

with w̄ common to all tasks.



Application to kernel and multiple kernel approximation

Explicit feature map for kernel
Gaussian kernel k(x,x′)

k(x,x′) ≈
m∑
j=1

[cos(vTj x) cos(vTj x
′) + sin(vTj x) sin(vTj x

′)]

where {vj} are random vectors samples according to the FT of the
Gaussian kernel

Application for MKL in our framework

I Sample several values of the Gaussian kernel bandwidth

I For each value, draw direction vectors {vj}
I For all bandwidth and direction vectors, compute the constraint

violation

I Select the pair of features violating the most their constraints.



Experimental results

Image classification for land-use mapping

I Several features from literature

I Comparison with samples parameters

Texture recognition problem

I Gabor features on Brodatz dataset

I Comparison with sampled parameters

Large scale approximated kernel machines

I Using Fourier feature for approximate Gaussian kernel
and MKL on Adult and IJCNN1 .

I Comparison with incomplete choleski decomposition



Image classification dataset

Predefined library
GrFLModel `1 SVM

Feature type Bands MOR ATT All

Overall accuracy 69.75 84.52 85.50 91.99 92.46
Cohen’s Kappa 0.613 0.806 0.819 0.901 0.907
m Residential 76.71 92.17 92.44 96.07 96.71
m Commercial 51.49 74.02 66.42 79.65 83.73
m Meadows 99.93 99.75 99.58 99.54 99.60
m Harvested 0 30.47 83.24 98.40 97.51
m Bare soil 49.53 99.98 99.41 99.93 99.91
m Roads 88.92 84.50 84.32 88.95 89.39
m Pools 21.09 95.47 98.28 97.42 96.40
m Parkings 0 42.05 31.26 56.41 51.99
m Trees 0 41.10 12.81 65.98 65.93

# Features 4 148 324 508 ∞
# Selected 4 84.20 114.60 202.40 210.40

Classified map with GrFL

I Training, 2047 pixels, testing 38722 pixels.

I Best overall performances.

I Models using jointly several kind of features.



Gabor feature for texture recognition (1)
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GrFL

fixed feat

selected feat.
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GrFL

fixed feat

selected feat.

I 3 classes, 16× 16 patches from the texture image (Brodatz)

I Increasing number of features and 1000 examples per class

I Approaches

I GrFL : our method
I Fixed feat : pre-defined features through discretization
I Selected feat: Lasso with 3000 of the features visited by GrFL



Gabor feature for texture recognition (2)
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GrFL
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GrFL

fixed feat

selected feat.

I increasing number of training samples with 81 Gabor features

Lessons

I Learning with infinitely many cheaper than learning with many

I Do not sample parameters but take advantage of the continuous
parameters



Large scale kernel machines

Adult IJCNN1

# feat GrFL GrFL-M IC GrFL GrFL-M IC
10 83.82 83.77 83.38 92.06 91.96 91.03
50 84.76 84.86 84.58 97.05 96.97 92.19

100 84.98 85.00 84.84 97.97 98.02 93.29
500 85.24 85.30 85.04 – – –

Adult IJCNN1
ratio GrFL GrFL-M IC GrFL GrFL-M IC
0.1 84.23 84.34 84.54 96.27 96.67 93.38
0.3 84.78 84.87 84.72 97.40 97.77 93.23
0.5 84.91 84.95 84.74 97.75 97.96 93.32
0.7 84.98 85.00 84.84 97.97 98.02 93.29

I Gaussian kernel with explicit and selected feature maps

I Datasets : Adult and IJCNN1 (40k and 110k training examples)

I Sample kernel bandwidth and then sample vector direction

I Better performances than Incomplete Choleski decomposition

I Easy multiple Gaussian kernel



Conclusions

Learning with infinitely many features

I Framework is generic to loss functions and sparsity inducing
regularizers.

I Works well in practice.

I Interpretability.

Questions and future works

I Theoretical guarantees when the algorithm stops at non-optimal
solution?

I Data with many features, is random sampling enough?

I What is smart sampling?

I Learn directly in the Fourier feature space, fourier neural nets.
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Algorithmic implementation: ADMM (1)

I Randomization for feature searching

I minimization of empirical risk + sparse regularizer for the inner
problem

I fast proximal algorithm or alternate direction methods of
multipliers

I Instantiation with square hinge loss of the ADMM approach

min
w

max(0, 1− yΦw)T max(0, 1− yΦw) + λΩ(w)

I variable splitting

minu,v,w max(0,u)T max(0,u) + λΩ(v)
u = 1− yΦw
v = w

decouples the influence of the loss and the regularizer in the
optimization problem.



Algorithmic implementation : ADMM (2)

I Lagrangian

L = max(0,u)T max(0,u) + λΩ(v) + αT (u− 1 + yΦw)

+βT (v −w) + ν
2‖u− 1 + yΦw‖2 + ν′

2 ‖v −w‖2

I Iteration

I minimization of the augmented Lagrangian wrt to each single
primal variable

I update of the dual variable α, β

I Steps :

I linear system for w
I proximal operator update for u related to the loss function
I proximal operator update for v related to the regularizer

I Nice points

I simple and generic
I convergence for inexact proximal operators
I efficient
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