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Signal Sequence Labeling

Problem: Obtaining a label for each sample of a signal while taking into
account the sequentiality of the samples.
Current approaches:
I Hidden Markov Models [1] ,Conditional Random Fields [2].
I Segment the signal (change detection [3]) and decide the label of the

regions afterward.

Our approach

I Take into account the temporal neighborhood of the sample in the
decision (time-delay embedding).

I Jointly learn a temporal filter with the classifier: adapt to noise and delay.

Definitions

I X ∈ RN×d Feature matrix, d channels and N samples.
I Xi ,j value of channel j for the i th sample.
I yi label of the i th sample.
I Filtering X w.r.t. F

X̃i ,j =
f∑

m=1

Fm,j Xi+1−m+n0,j (1)

F ∈ Rf×d Filter matrix, d filters of length f
n0 filter delay

I ‖.‖F is the Frobenius norm of a matrix.
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Figure 1: Sample classification vs
Time window classification (at time i)

Window-SVM

I We learn a classifier (W ,w0) for a window of samples (Time-Delay
Embedding).

I Decision function for the i th sample of X :

gW (i ,X ) =
f∑

m=1

d∑
j=1

Wm,jXi+1−m+n0,j + w0 (2)

where W ∈ Rf×d and w0 ∈ R are the classification parameters and f is
the size of the time-window.

I Optimal function gW (.) obtained by minimizing:

JWSVM(W ) =
1
2
‖W‖2F +

C
2

N∑
i=1

H(y,X ,gW , i)2 (3)

w.r.t. (W ,w0) with H(y,X ,g, i) = max(0,1− yig(i ,X )).

Filter-SVM

I We jointly learn a sample classifier (w,w0) and a filtering
F of the channels.

I Decision function for the i th sample of X :

gF (i ,X ) =
f∑

m=1

d∑
j=1

wjFm,jXi+1−m+n0,j + w0 (4)

where w and w0 are the parameters of the linear SVM
classifier corresponding to a weighting of the channels.

I Optimal function gF (.) obtained by minimizing:

JFSVM =
1
2
‖w‖2 +

C
2

n∑
i=1

H(y,X ,gF , i)
2 +

λ

2
‖F‖2F (5)

w.r.t. (F ,w,w0) where λ is a regularization term.

Filter-SVM Solver

I Cost non-convex but convex w.r.t. w and w0 when F is
fixed.

I We define J(F ) that is differentiable [4]:

J(F ) = min
w,w0

1
2
‖w‖2 +

C
2

n∑
i=1

H(y,X ,gF , i)
2

I We minimize:
J(F ) +

λ

2
‖F‖2F

w.r.t. F using a gradient descent along F and a line search
to find the optimal step.

Numerical Experiments on toy dataset

I nbrel discriminative signals with a switching mean (−1,1)
among nbtot = d .

I σ Gaussian noise and time-lags applied to the channels.
I f = 21 and n0 = 11 corresponding to a good average

filtering.
I Test error is the average of 10 runs.
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Figure 2: Toy example for nbtot = nbrel = 2 and σ = 1 .
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Figure 3: Histograms of the samples for the 2 possible labels of a 1D
signal (with / without filtering).
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Figure 4: Fourier Transform of the discriminative information and of the
impulse response of learned filters
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Figure 5: Test error for different σ values and for different number of channels
nbtot .
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Figure 6: Coefficients of W (left) and coefficients F weighted by w (right).

Numerical Experiments on BCI dataset

I 3 classes, 3 subjects/tasks, 96 PSD channels.
I 9000 training samples, 3000 test samples.
I Test Error:

Method Parameters Sub 1 Sub 2 Sub3 Avg
BCI Comp. 0.2040 0.2969 0.4398 0.3135
SVM 0.2877 0.4283 0.5209 0.4123
Filter-SVM f = 8, n0 = 0 0.2337 0.3589 0.4937 0.3621

f = 20, n0 = 0 0.2021 0.2693 0.4381 0.3032
f = 50, n0 = 0 0.1321 0.2382 0.4395 0.2699
f = 100,n0 = 50 0.0537 0.1659 0.3859 0.2018

Avg-SVM f = 100,n0 = 50 0.1544 0.2235 0.3870 0.2550

Figure 7: Discriminative Channel/Delay maps on BCI (F filter for
subject 1): label 1 against all (left) and label 2 against all (right).

Conclusion

I On-line sequence labeling classifier.
I Better variable selection than classical SVM.
I Visualization of space/time discriminative maps.

Future works

I Non-linear SVM (kernel).
I Multi-task approach for F .
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