
1/36

Practical introduction to machine learning
Part 1 : Data and Machine Learning problems

Rémi Flamary - CMAP, École Polytechnique

Master Data Science, Institut Polytechnique de Paris

October 11, 2023

2/36

Objectives of this course

Objectives

▶ Introduction to standard Machine Learning methods.

▶ Allow you to find which problem/method fits your application.

▶ Provide vocabulary and tools necessary for more in-depth study.

▶ Promote good practices, interpretation and reproducibility of ML.

What we will do

▶ Define major ML problems from unsupervised and supervised learning.

▶ Discuss in more details (optimization problem, parameters, algorithm) some
classical approaches.

▶ Practical sessions on real data with Python/Numpy/Scikit-learn (100% of grade).

What we will not do

▶ Talk only about deep learning.

▶ Talk about everything on the slides (some information provided for reference only).

▶ Discuss in details the theory behind all the methods.

▶ Teach linear algebra, probability theory and Python programming (requirements).

3/36

What is machine learning?

Objective of Machine Learning (ML)

Teach a machine to process automatically a large amount of data (signals, images,
text, objects) in order to solve a given problem.

Unsupervised learning: Understanding the data.

▶ Clustering

▶ Probability Density Estimation

▶ Generative modeling

▶ Dimensionality reduction

Supervised learning: Learning to predict.

▶ Classification

▶ Regression

Reinforcement learning: Learn from environment.

Train a machine to choose actions that maximize a reward
(games, autonomous vehicles, control).

4/36

Machine learning in practice

▶ Data acquisition : sensor, databases, manual or automatic labeling

▶ Pre-processing : denoising, formating, numerical conversion, normalization

▶ Feature extraction : manual when prior knowledge, feature selection
dimensionality reduction

▶ Model estimation : classification, regression, clustering.

▶ Validation : model and parameter selection.

▶ Analysis : performance, uncertainty, interpretation of the model.

Features extraction, selection and model estimation can be done simultaneously (deep
learning, sparse models).



5/36

Find your ML method

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

6/36

Overview of MAP654I

1. Data and Machine Learning problems
▶ Data properties and visualization
▶ Pre-processing
▶ Finding your Machine Learning problem

2. Unsupervised learning
▶ Clustering
▶ Density estimation and generative modeling
▶ Dictionary learning and collaborative filtering
▶ Dimensionality reduction and manifold learning

3. Supervised learning
▶ Bayesian decision and Nearest neighbors
▶ Linear models nonlinear methods for regression and classification
▶ Trees, forest and ensemble methods

4. Validation and interpretation
▶ Performance measures
▶ Models and parameter selection (validation)
▶ Interpretation of the methods

7/36

Overview for the current part

Introduction 2
What is machine learning? 3
Data with or without labels 8
Data interpretation and visualization 13
Preprocessing and features 15

Unsupervised learning, data description/exploration 19
Clustering 20
Probability density estimation and generative modeling 21
Dimensionality reduction, visualization 23

Supervised learning 24
Regression 25
Classification 26
Other supervised problems 28
Generalization 31

Conclusion 32

8/36

Data description

Vector data

▶ A feature is a distinct trait, or detail of an object.

▶ An object is represented as a combination of features i.e. a vector x of
dimensionality d.

▶ The space of size d is called the representation/feature space (often Rd).

Dataset

▶ An ensemble of objects is often denoted as a data set.

▶ The individuals objects in a dataset are called examples or samples since they are
often supposed to be realizations of probability distributions.

▶ Samples can be represented as points in this space. This representation is called
scatter plot and is usually used for 2D and 3D data.



9/36

Unsupervised dataset

X =




x⊤
1

x⊤
2

.

.

.

x⊤
i

.

.

.

x⊤
n



=




x11 x12 . . . x1j . . . x1d

x21 x22 . . . x2j . . . x2d

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

xi1 xi2 . . . xij . . . xid

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

xn1 xn2 . . . xnj . . . xnd




Unsupervised learning

▶ The dataset contains the samples {xi}ni=1 where n is the number of samples of
size d.

▶ d and n define the dimensionality of the learning problem.

▶ Data stored as a matrix X ∈ Rn×d with X = [x1, . . . ,xn]
⊤ contains the

transposed training samples as lines (features are columns).

▶ Note: in the course we use 1-based indexing as standard in math but in Python
0-based indexing is used.

10/36

Supervised dataset

X =




x⊤
1

x⊤
2

.

.

.

x⊤
i

.

.

.

x⊤
n



, y =




y1

y2

.

.

.
yi

.

.

.
yn




Classification Regression

Supervised learning

▶ The dataset contains the samples {xi, yi}ni=1 where xi is the feature sample and
yi ∈ Y its label.

▶ The values to predict (label) can be concatenated in a vector y ∈ Yn

▶ Prediction space Y can be:
▶ Y = {−1, 1} or Y = {1, . . . ,m} for classification problems.
▶ Y = R for regression problems (Rp for multi-output regression).
▶ Structured for structured prediction (graphs,...).

▶ Scatter plots for supervised data (plt.scatter) use color for the label.

11/36

Example of real life dataset

1 2 3 4 5 6 7 8
Day of the week

10
15
20
25
30
35
40
45
50

Us
ag

e 
in

 K
W

Week usage of the Drahi building
Week usage
Average usage

Electrical usage of the Drahi X-Novation Center

▶ Demonstrator of Energy4Climate of IP Paris.

▶ Recording of the electrical usage of the building during 1.5 years.

▶ Can be completed by weather measurement (linked to energy usage).
▶ Data is a temporal signal that will be used in the following for:

▶ Clustering (classification of week usage)
▶ Dimensionality reduction (visualization of week usage)
▶ Regression/Classification (prediction of usage in the next 24 hours).

▶ Note that some pre-processing of the data is necessary before getting the
unsupervised or supervised datasets.

12/36

The Python in the room

Python/Numpy (https://numpy.org/doc/ [Harris et al., 2020])

▶ Python/Numpy will be used in this course and practical sessions.

▶ The numerical data will be stored in np.array objects.

▶ We will suggest the name of the functions to use in the practical sessions.

Other libraries

▶ Scipy (https://www.scipy.org/docs.html)

▶ Pandas (https://pandas.pydata.org/docs/)

▶ Matplotlib (https://matplotlib.org/)

▶ Seaborn (https://seaborn.pydata.org/)

▶ Scikit-learn (https://scikit-learn.org/)

Installed by default on Anaconda distributions.

Default import

1 import numpy as np
2 import scipy as sp
3 import pandas as pd
4 import pylab as pl
5 import seaborn as sns

Those modules will be
supposed already
imported in the course.

Image from ”Le petit prince”.



13/36

Getting to know your data

Basic properties : descriptive statistics

▶ Look at the arrays (IDE array viewer or print),
is the data complete (NaN) ?

▶ Look at the properties of the features with
with pd.DataFrame(X).describe().

▶ Do the features correspond to physical
measurement, are they comparable?

▶ If very different dynamics (variances and
mean/medians) then some pre-processing may
be needed.

Interpretation: plots

▶ Compare the features distributions with
histograms and violinplots (pl.violinplot).

▶ If images them plot some images (pl.imshow).

▶ If signals of time series then plot some signals
(pl.plot).

▶ If unstructured data then use scatterplots (see
next slide).

▶ Dimensionality reduction can be necessary.
1 2 3

Feature

−3

−2

−1

0

1

2

3

4

Violinplot (supervised)

14/36

Visualizing your data with scatterplot

2D 3D (2D+color) 4D (2D+color+size) 5D (3D+color+size)

−1
0

1
2

3
4

−1
0

1
2

3
4

−3
−2
−1
0
1
2
3

Scatterplot pl.scatter(X[:,0],X[:,1],c=X[:,2],s=X[:,3])

▶ Can be use to see relations between features (and labels) in small dimensions.

▶ Size (s=) and colors (c=) of the points can be used to go beyond 2D.

▶ Sometimes dimensionality reduction is necessary (see next course).

Scatterplot matrix sns.pairplot(df,hue=key)

▶ Provided by Seaborn but requires pd.DataFrame

data (color label set with hue=).

▶ Pairwise 2D scatterplots between features.

▶ Visualization of pairwise relationships between
features and the target label.

0

2

4

0

0

2

4

1

0 5
0

0

5

10

15

2

0 5
1

0 20
2

3
0.0
1.0
2.0
3.0
4.0

15/36

Preprocessing and feature extraction

Objective

Process (transform) the raw data input so that the ML methods will have better
performances.

Classical approaches

▶ Scaling (standard, unit, min/max), nonlinear mapping of features

▶ Data imputation (missing data)

▶ Encoding (from text or categorical to vector)

▶ Features selection (prior knowledge, experts, automated)

▶ Filtering (temporal and spatial, denoising)

▶ Dimensionality reduction (low dimensional modeling and visualization)

Most unsupervised learning methods can be used for feature extraction.

Warning

▶ Sensitivity to outliers (sklearn.preprocessing.RobustScaler).

▶ Transformation needed on new data for supervised learning (out-of-sample).

▶ Invertible transformations allows for better interpretability.

16/36

Examples of pre-processing

−25 0 25 50 75
−20

0

20

40

60

Raw data

−1 0 1 2

−1

0

1

2

Standard scaler

−0.5 0.0 0.5 1.0

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
Normalizer

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Quantile

−2 −1 0 1 2

−2

−1

0

1

2
Power

Preprocessing methods from Scikit-learn [Pedregosa et al., 2011]

▶ Standard scaler sklearn.preprocessing.StandardScaler()

Remove mean and divide by standard deviation for all features (no visible change
in scatterplot).

▶ Normalizer sklearn.preprocessing.Normalizer()

Scale individual samples to have a unit norm (projection on the hypersphere).

▶ Transform to uniform distribution sklearn.preprocessing.QuantileTransformer()

Nonlinear mapping of each feature to a uniform distribution.

▶ Transform to Normal distribution sklearn.preprocessing.PowerTransformer()

Nonlinear mapping of each feature to a Normal distribution.



17/36

Feature extraction

Clean separation Noisy separation Dependent features Noisy features

What are“good” features in supervised learning ?

The quality of a feature depends on the learning problem.

▶ Classification Samples from the different classes should be separated in the
feature space (clustered classes are simpler to discriminate).

▶ Regression The position in the feature space should help determining the value to
predict (correlation or at least non-independence with the value to predict).

How to perform feature extraction?

▶ Manually : prior knowledge of the data, research literature, existing toolboxes.

▶ Automatically : feature extraction part of the ML model (deep neural network,
feature explorations).

18/36

Dimensionality

x1
D = 1

x1

x2

D = 2

x1

x2

x3
D = 3

Curse of dimensionality

▶ Datasets have n of samples of dimensionality d.

▶ In order to have a constant sampling of the space, the required number of
samples n is exponential in d.

▶ In high dimension it is easy to overfit a model (predict well on training data but
fail on new data).

▶ High dimensional statistics study the performances in this case.

▶ Main reason for simple models (linear) and dimensionality reduction.

▶ State of the art model on Imagenet (14M training images, 469x387 pixels in
average) on september 2021 has 2 Billion parameters [Zhai et al., 2021].

19/36

Unsupervised learning, data description/exploration

Different objectives

▶ Clustering : {xi}ni=1 ⇒ {ŷi}ni=1 where ŷ is the labels of a group.

▶ Probability density estimation : {xi}ni=1 ⇒ p̂(x).

▶ Generative modeling : {xi}ni=1 ⇒ G(z) such that p(G(z)) ≈ p(x) with
z ∼ N(0, σ2).

▶ Dimensionality reduction : {xi ∈ Rd}ni=1 ⇒ {x̃i ∈ Rp}ni=1 with p ≪ d.

20/36

Clustering

⇒

Objective

{xi}ni=1 ⇒ {ŷi}ni=1

▶ Organize training examples in groups: Find the labels ŷi ∈ Y = {1, . . . ,K}.
▶ Optional : Find a clustering function f̂(x) ∈ Y that can cluster new samples.

Parameters

▶ K number of classes.

▶ Similarity measure between
samples.

▶ Minimal distance between
clusters.

Methods

▶ K-means.

▶ Gaussian mixtures.

▶ Spectral clustering.

▶ Hierarchical clustering.



21/36

Probability density estimation

⇒

Objective

{xi}ni=1 ⇒ p̂

▶ Estimate a probability density p̂(x) from the IID samples in the data.

▶ Probability density : p̂(x) ≥ 0, ∀x and
∫
p̂(x)dx = 1.

▶ Optional : generate new data from p̂(x).

Parameters

▶ Type of distribution (Histogram,
Gaussian, . . . ).

▶ Parameters of the law (µ,Σ)

Methods

▶ Histogram (1D/2D).

▶ Parzen/kernel density estimation.

▶ Gaussian mixture.

22/36

Generative modeling

⇒

Objective

{xi}ni=1 ⇒ ĝ such that p(ĝ(z)) ≈ p(x) with z ∼ N

▶ Estimate a mapping function ĝ(z) ∈ Rd that generates similar samples to {xi}ni=1.

▶ Latent variable z follows a known Normal or Uniform distribution.

▶ Optional : recover an estimation of p̂(x) using the change of variable formula.

Parameters

▶ Type of distribution for z
(Gaussian, uniform, . . . ).

▶ Type of function for g.

Methods

▶ PCA (Gaussian data).

▶ Gen. Adversarial Networks (GAN)

▶ Variational Auto-Encoders (VAE)

▶ Diffusion models

23/36

Dimensionality reduction

−1
0

1
2

3
4

−1
0

1
2

3
4

−3
−2
−1
0
1
2
3 ⇒

Objective

{xi}ni=1 ⇒ {x̃i ∈ Rp}ni=1 with p ≪ d

▶ Project the data into a low dimensional space of size p ≪ d.

▶ Preserve the information in the data (class, subspace, manifold).

▶ Optional : Learning a projection function m̂ : Rd → Rp for new data.

Parameters

▶ Type of projection (linear,
nonlinear).

▶ Assumptions about the data
(subspace, manifold).

▶ Similarity between samples.

Methods

▶ Feature selection.

▶ Principal Component Analysis (PCA).

▶ Dictionary learning, ICA.

▶ Non-linear dimensionality reduction
(MDS, tSNE, Auto-Encoder)

24/36

Supervised learning

Objective

▶ Training dataset : {xi, yi}ni=1 with observations xi ∈ Rd and labels yi ∈ Y.

▶ Train a function f(·) : Rd → Y on the dataset.

Types of supervised prediction

▶ Classification f(·) predicts a class (discrete output) either binary Y = {−1, 1} or
multi-class Y = {1, . . . ,K}.

▶ Regression f(·) predicts a continuous value (Y = R) or several (Y = Rp).

▶ Structured prediction f(·) predicts a structured object (graph, tree, molecule)
(not discussed in detail here).



25/36

Regression

⇒

Objective

{xi, yi}ni=1 ⇒ f : Rd → R

▶ Train a function f(x) = y ∈ Y predicting a continuous value (Y = R).
▶ Can be extended to multi-value prediction (Y = Rp).

Parameters

▶ Type of function (linear, kernel,
neural network).

▶ Performance measure.

▶ Regularization.

Methods

▶ Least Square (LS).

▶ Ridge regression, Lasso.

▶ Kernel regression.

▶ Deep learning.

26/36

Binary classification

⇒

Objective

{xi, yi}ni=1 ⇒ f : Rd → {−1, 1}

▶ Train a function f(x) = y ∈ Y predicting a binary value (Y = {−1, 1}).
▶ In practice, train a continuous function f : Rd → R and predict with sign(f).

▶ f(x) = 0 defines the boundary on the partition of the feature space.

▶ Optional: provide uncertainty information such as probabilities of each class.

Parameters

▶ Type of function (linear, kernel,
neural network).

▶ Performance measure.

▶ Regularization.

Methods

▶ Bayesian classifier (LDA, QDA)

▶ Linear and kernel discrimination

▶ Decision trees, random forests.

▶ Deep learning.

27/36

Multiclass classification

⇒

Objective

{xi, yi}ni=1 ⇒ f : Rd → {1, . . . ,K}

▶ Train a function f(x) = y ∈ Y predicting an integer value (Y = {1, . . . ,K}).
▶ In practice K continuous score functions fk are estimated and the prediction is

f(x) = argmax
k

fk(x)

▶ Softmax can be used instead of argmax to get probability estimates.

Parameters

▶ Type of function (linear, kernel,
neural network).

▶ Performance measure.

▶ Regularization.

Methods

▶ Bayesian classifier (LDA, QDA)

▶ Linear and kernel discrimination

▶ Decision trees, random forests.

▶ Deep learning.
28/36

Structured learning and prediction

Objective

{xi,yi}ni=1 ⇒ f : X → Y

▶ Train a prediction function f(x) = y ∈ Y on stuctured data.

▶ The structure prediction function is often expressed as

f(x) = argmax
y∈Y

f̃(x,y)

▶ Both X and Y can be spaces of structured data (graph, sequence, tree).

Parameters

▶ Type of function (linear, kernel,
neural network).

▶ Performance measure.

▶ How to find the max value in Y.

Methods

▶ Structured Support Vector Machine
(SSVM)

▶ Conditional Random Fields (CRF)

▶ Convolutional Graph Networks.



29/36

Semi-supervised learning

⇒

Objective

{xi, yi}mi=1, {xi}ni=m+1 ⇒ f : Rd → Y

▶ Train a prediction function f(x) = y ∈ Y from partially labeled data.

▶ Only m < n labeled samples out of the n total samples.

Parameters

▶ Type of function (linear, kernel,
neural network).

▶ Performance measure.

▶ Assumption on label propagation.

Methods

▶ Low-density separation

▶ Laplacian regularization

▶ Heuristic approaches

▶ Generative models

30/36

Other common ML problems

Multi-task learning

{xt
i, y

t
i}ni=1, ∀t ∈ {1, . . . , T} ⇒ ft : X → Yt, ∀t

▶ Train simultaneously T functions ft and share information between the tasks.

Domain Adapation (unsupervised)

{xs
i , y

s
i }ns

i=1, {xt
i}nt

i=1 ⇒ ft : X → Y, ∀t
▶ Train a function ft on unlabeled target data {xt

i}nt
i=1 and related but different

labeled source data {xs
i , y

s
i }ns

i=1.

▶ Variants include Multi-Source DA (MSDA) and semi supervised DA (few labels
available in target).

Transfer Learning

f̃ , {xi, yi}ni=1 ⇒ f : X → Y, ∀t
▶ Train a function f on dataset {xi, yi}ni=1 using a model f̃ already trained on

another tasks (benefit from other training experience)

31/36

Generalization of a model

Acc. 0.89/0.89 train/test Acc. 0.93/0.92 train/test Acc. 0.98/0.88 train/test

Complexity of a model

▶ Under-fitting when the model is too simple.

▶ Over-fitting occurs when the model is too
complex (memorization, bad students
remember only the training samples).

▶ Training data performance is not a good proxy
for testing performance.

▶ We want to predict well on new data!

▶ Parameter and model validation. 0 5 10 15 20 25 30
Complexity of the model

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Accuracy on train/test datasets
Train
Test

32/36

General references for this course

Machine learning references

▶ Elements of statistical learning (free PDF online) [Friedman et al., 2001].

▶ Pattern recognition and machine learning [Bishop Christopher et al., 2006].

▶ Deep learning (https://www.deeplearningbook.org/) [Goodfellow et al., 2016].

▶ Probabilistic Machine Learning (https://probml.github.io/ ) [Murphy, 2022]

▶ ML course of Andrew Ng (free on Coursera and Youtube).

Applied mathematics

▶ Linear algebra [Petersen et al., 2008]
[Golub and Van Loan, 1996].

▶ Convex Optimization
[Boyd et al., 2004] (Free PDF online).

▶ Statistics [Wasserman, 2013].

Numerical Python

▶ All documentations.

▶ https://scipy-lectures.org/

▶ Google and
https://stackoverflow.com/.



33/36

Machine learning

https://xkcd.com/

34/36

References I

[Bishop Christopher et al., 2006] Bishop Christopher, M. et al. (2006).

Pattern recognition and machine learning.

Information science and statisticsNew York: Springer.

[Boyd et al., 2004] Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004).

Convex optimization.

Cambridge university press.

[Forbes, 2016] Forbes, F. (2016).

Modelling structured data with probabilistic graphical models.

EAS Publications Series, 77:195–219.

[Friedman et al., 2001] Friedman, J., Hastie, T., Tibshirani, R., et al. (2001).

The elements of statistical learning, volume 1.

Springer series in statistics New York.

[Golub and Van Loan, 1996] Golub, G. H. and Van Loan, C. F. (1996).

Matrix computations. johns hopkins studies in the mathematical sciences.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016).

Deep learning.

MIT press.

35/36

References II

[Harris et al., 2020] Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen,
P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M.,
Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Ŕıo, J. F., Wiebe, M., Peterson,
P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C.,
and Oliphant, T. E. (2020).

Array programming with NumPy.

Nature, 585(7825):357–362.

[Hunter, 2007] Hunter, J. D. (2007).

Matplotlib: A 2d graphics environment.

Computing in Science & Engineering, 9(3):90–95.

[Murphy, 2022] Murphy, K. P. (2022).

Probabilistic machine learning: an introduction.

MIT press.

[pandas development team, 2020] pandas development team, T. (2020).

pandas-dev/pandas: Pandas.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011).

Scikit-learn: Machine learning in python.

the Journal of machine Learning research, 12:2825–2830.

36/36

References III

[Petersen et al., 2008] Petersen, K. B., Pedersen, M. S., et al. (2008).

The matrix cookbook.

Technical University of Denmark, 7(15):510.

[Virtanen et al., 2020] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J.,
Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,
Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M.,
Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors (2020).

SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.

Nature Methods, 17:261–272.

[Waskom, 2021] Waskom, M. L. (2021).

seaborn: statistical data visualization.

Journal of Open Source Software, 6(60):3021.

[Wasserman, 2013] Wasserman, L. (2013).

All of statistics: a concise course in statistical inference.

Springer Science & Business Media.

[Zhai et al., 2021] Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L. (2021).

Scaling vision transformers.

arXiv preprint arXiv:2106.04560.


