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Objectives of this course

Objectives

▶ Introduction to standard Machine Learning methods.

▶ Allow you to find which problem/method fits your application.

▶ Provide vocabulary and tools necessary for more in-depth study.

▶ Promote good practices, interpretation and reproducibility of ML.

What we will do

▶ Define major ML problems from unsupervised and supervised learning.

▶ Discuss in more details (optimization problem, parameters, algorithm) some
classical approaches.

▶ Practical sessions on real data with Python/Numpy/Scikit-learn (100% of grade).

What we will not do

▶ Talk only about deep learning.

▶ Talk about everything on the slides (some information provided for reference only).

▶ Discuss in details the theory behind all the methods.

▶ Teach linear algebra, probability theory and Python programming (requirements).
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What is machine learning?

Objective of Machine Learning (ML)

Teach a machine to process automatically a large amount of data (signals, images,
text, objects) in order to solve a given problem.

Unsupervised learning: Understanding the data.

▶ Clustering

▶ Probability Density Estimation

▶ Generative modeling

▶ Dimensionality reduction

Supervised learning: Learning to predict.

▶ Classification

▶ Regression

Reinforcement learning: Learn from environment.

Train a machine to choose actions that maximize a reward
(games, autonomous vehicles, control).
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Machine learning in practice

▶ Data acquisition : sensor, databases, manual or automatic labeling

▶ Pre-processing : denoising, formating, numerical conversion, normalization

▶ Feature extraction : manual when prior knowledge, feature selection
dimensionality reduction

▶ Model estimation : classification, regression, clustering.

▶ Validation : model and parameter selection.

▶ Analysis : performance, uncertainty, interpretation of the model.

Features extraction, selection and model estimation can be done simultaneously (deep
learning, sparse models).
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Find your ML method

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
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Overview of MAP654I

1. Data and Machine Learning problems
▶ Data properties and visualization
▶ Pre-processing
▶ Finding your Machine Learning problem

2. Unsupervised learning
▶ Clustering
▶ Density estimation and generative modeling
▶ Dictionary learning and collaborative filtering
▶ Dimensionality reduction and manifold learning

3. Supervised learning
▶ Bayesian decision and Nearest neighbors
▶ Linear models nonlinear methods for regression and classification
▶ Trees, forest and ensemble methods

4. Validation and interpretation
▶ Performance measures
▶ Models and parameter selection (validation)
▶ Interpretation of the methods
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Data description

Vector data

▶ A feature is a distinct trait, or detail of an object.

▶ An object is represented as a combination of features i.e. a vector x of
dimensionality d.

▶ The space of size d is called the representation/feature space (often Rd).

Dataset

▶ An ensemble of objects is often denoted as a data set.

▶ The individuals objects in a dataset are called examples or samples since they are
often supposed to be realizations of probability distributions.

▶ Samples can be represented as points in this space. This representation is called
scatter plot and is usually used for 2D and 3D data.
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Unsupervised dataset
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Unsupervised learning

▶ The dataset contains the samples {xi}ni=1 where n is the number of samples of
size d.

▶ d and n define the dimensionality of the learning problem.

▶ Data stored as a matrix X ∈ Rn×d with X = [x1, . . . ,xn]
⊤ contains the

transposed training samples as lines (features are columns).

▶ Note: in the course we use 1-based indexing as standard in math but in Python
0-based indexing is used.
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Supervised dataset
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Classification Regression

Supervised learning

▶ The dataset contains the samples {xi, yi}ni=1 where xi is the feature sample and
yi ∈ Y its label.

▶ The values to predict (label) can be concatenated in a vector y ∈ Yn

▶ Prediction space Y can be:
▶ Y = {−1, 1} or Y = {1, . . . ,m} for classification problems.
▶ Y = R for regression problems (Rp for multi-output regression).
▶ Structured for structured prediction (graphs,...).

▶ Scatter plots for supervised data (plt.scatter) use color for the label.

11/36

Example of real life dataset

1 2 3 4 5 6 7 8
Day of the week

10
15
20
25
30
35
40
45
50

Us
ag

e 
in

 K
W

Week usage of the Drahi building
Week usage
Average usage

Electrical usage of the Drahi X-Novation Center

▶ Demonstrator of Energy4Climate of IP Paris.

▶ Recording of the electrical usage of the building during 1.5 years.

▶ Can be completed by weather measurement (linked to energy usage).
▶ Data is a temporal signal that will be used in the following for:

▶ Clustering (classification of week usage)
▶ Dimensionality reduction (visualization of week usage)
▶ Regression/Classification (prediction of usage in the next 24 hours).

▶ Note that some pre-processing of the data is necessary before getting the
unsupervised or supervised datasets.
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The Python in the room

Python/Numpy (https://numpy.org/doc/ [Harris et al., 2020])

▶ Python/Numpy will be used in this course and practical sessions.

▶ The numerical data will be stored in np.array objects.

▶ We will suggest the name of the functions to use in the practical sessions.

Other libraries

▶ Scipy (https://www.scipy.org/docs.html)

▶ Pandas (https://pandas.pydata.org/docs/)

▶ Matplotlib (https://matplotlib.org/)

▶ Seaborn (https://seaborn.pydata.org/)

▶ Scikit-learn (https://scikit-learn.org/)

Installed by default on Anaconda distributions.

Default import

1 import numpy as np
2 import scipy as sp
3 import pandas as pd
4 import pylab as pl
5 import seaborn as sns

Those modules will be
supposed already
imported in the course.

Image from ”Le petit prince”.
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Getting to know your data

Basic properties : descriptive statistics

▶ Look at the arrays (IDE array viewer or print),
is the data complete (NaN) ?

▶ Look at the properties of the features with
with pd.DataFrame(X).describe().

▶ Do the features correspond to physical
measurement, are they comparable?

▶ If very different dynamics (variances and
mean/medians) then some pre-processing may
be needed.

Interpretation: plots

▶ Compare the features distributions with
histograms and violinplots (pl.violinplot).

▶ If images them plot some images (pl.imshow).

▶ If signals of time series then plot some signals
(pl.plot).

▶ If unstructured data then use scatterplots (see
next slide).

▶ Dimensionality reduction can be necessary.
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Visualizing your data with scatterplot
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Scatterplot pl.scatter(X[:,0],X[:,1],c=X[:,2],s=X[:,3])

▶ Can be use to see relations between features (and labels) in small dimensions.

▶ Size (s=) and colors (c=) of the points can be used to go beyond 2D.

▶ Sometimes dimensionality reduction is necessary (see next course).

Scatterplot matrix sns.pairplot(df,hue=key)

▶ Provided by Seaborn but requires pd.DataFrame

data (color label set with hue=).

▶ Pairwise 2D scatterplots between features.

▶ Visualization of pairwise relationships between
features and the target label.
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Preprocessing and feature extraction

Objective

Process (transform) the raw data input so that the ML methods will have better
performances.

Classical approaches

▶ Scaling (standard, unit, min/max), nonlinear mapping of features

▶ Data imputation (missing data)

▶ Encoding (from text or categorical to vector)

▶ Features selection (prior knowledge, experts, automated)

▶ Filtering (temporal and spatial, denoising)

▶ Dimensionality reduction (low dimensional modeling and visualization)

Most unsupervised learning methods can be used for feature extraction.

Warning

▶ Sensitivity to outliers (sklearn.preprocessing.RobustScaler).

▶ Transformation needed on new data for supervised learning (out-of-sample).

▶ Invertible transformations allows for better interpretability.
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Examples of pre-processing
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Preprocessing methods from Scikit-learn [Pedregosa et al., 2011]

▶ Standard scaler sklearn.preprocessing.StandardScaler()

Remove mean and divide by standard deviation for all features (no visible change
in scatterplot).

▶ Normalizer sklearn.preprocessing.Normalizer()

Scale individual samples to have a unit norm (projection on the hypersphere).

▶ Transform to uniform distribution sklearn.preprocessing.QuantileTransformer()

Nonlinear mapping of each feature to a uniform distribution.

▶ Transform to Normal distribution sklearn.preprocessing.PowerTransformer()

Nonlinear mapping of each feature to a Normal distribution.
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Feature extraction

Clean separation Noisy separation Dependent features Noisy features

What are“good” features in supervised learning ?

The quality of a feature depends on the learning problem.

▶ Classification Samples from the different classes should be separated in the
feature space (clustered classes are simpler to discriminate).

▶ Regression The position in the feature space should help determining the value to
predict (correlation or at least non-independence with the value to predict).

How to perform feature extraction?

▶ Manually : prior knowledge of the data, research literature, existing toolboxes.

▶ Automatically : feature extraction part of the ML model (deep neural network,
feature explorations).
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Dimensionality
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Curse of dimensionality

▶ Datasets have n of samples of dimensionality d.

▶ In order to have a constant sampling of the space, the required number of
samples n is exponential in d.

▶ In high dimension it is easy to overfit a model (predict well on training data but
fail on new data).

▶ High dimensional statistics study the performances in this case.

▶ Main reason for simple models (linear) and dimensionality reduction.

▶ State of the art model on Imagenet (14M training images, 469x387 pixels in
average) on september 2021 has 2 Billion parameters [Zhai et al., 2021].
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Unsupervised learning, data description/exploration

Different objectives

▶ Clustering : {xi}ni=1 ⇒ {ŷi}ni=1 where ŷ is the labels of a group.

▶ Probability density estimation : {xi}ni=1 ⇒ p̂(x).

▶ Generative modeling : {xi}ni=1 ⇒ G(z) such that p(G(z)) ≈ p(x) with
z ∼ N(0, σ2).

▶ Dimensionality reduction : {xi ∈ Rd}ni=1 ⇒ {x̃i ∈ Rp}ni=1 with p ≪ d.
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Clustering

⇒

Objective

{xi}ni=1 ⇒ {ŷi}ni=1

▶ Organize training examples in groups: Find the labels ŷi ∈ Y = {1, . . . ,K}.
▶ Optional : Find a clustering function f̂(x) ∈ Y that can cluster new samples.

Parameters

▶ K number of classes.

▶ Similarity measure between
samples.

▶ Minimal distance between
clusters.

Methods

▶ K-means.

▶ Gaussian mixtures.

▶ Spectral clustering.

▶ Hierarchical clustering.
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Probability density estimation

⇒

Objective

{xi}ni=1 ⇒ p̂

▶ Estimate a probability density p̂(x) from the IID samples in the data.

▶ Probability density : p̂(x) ≥ 0, ∀x and
∫
p̂(x)dx = 1.

▶ Optional : generate new data from p̂(x).

Parameters

▶ Type of distribution (Histogram,
Gaussian, . . . ).

▶ Parameters of the law (µ,Σ)

Methods

▶ Histogram (1D/2D).

▶ Parzen/kernel density estimation.

▶ Gaussian mixture.
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Generative modeling

⇒

Objective

{xi}ni=1 ⇒ ĝ such that p(ĝ(z)) ≈ p(x) with z ∼ N

▶ Estimate a mapping function ĝ(z) ∈ Rd that generates similar samples to {xi}ni=1.

▶ Latent variable z follows a known Normal or Uniform distribution.

▶ Optional : recover an estimation of p̂(x) using the change of variable formula.

Parameters

▶ Type of distribution for z
(Gaussian, uniform, . . . ).

▶ Type of function for g.

Methods

▶ PCA (Gaussian data).

▶ Gen. Adversarial Networks (GAN)

▶ Variational Auto-Encoders (VAE)

▶ Diffusion models
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Dimensionality reduction
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Objective

{xi}ni=1 ⇒ {x̃i ∈ Rp}ni=1 with p ≪ d

▶ Project the data into a low dimensional space of size p ≪ d.

▶ Preserve the information in the data (class, subspace, manifold).

▶ Optional : Learning a projection function m̂ : Rd → Rp for new data.

Parameters

▶ Type of projection (linear,
nonlinear).

▶ Assumptions about the data
(subspace, manifold).

▶ Similarity between samples.

Methods

▶ Feature selection.

▶ Principal Component Analysis (PCA).

▶ Dictionary learning, ICA.

▶ Non-linear dimensionality reduction
(MDS, tSNE, Auto-Encoder)
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Supervised learning

Objective

▶ Training dataset : {xi, yi}ni=1 with observations xi ∈ Rd and labels yi ∈ Y.

▶ Train a function f(·) : Rd → Y on the dataset.

Types of supervised prediction

▶ Classification f(·) predicts a class (discrete output) either binary Y = {−1, 1} or
multi-class Y = {1, . . . ,K}.

▶ Regression f(·) predicts a continuous value (Y = R) or several (Y = Rp).

▶ Structured prediction f(·) predicts a structured object (graph, tree, molecule)
(not discussed in detail here).
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Regression

⇒

Objective

{xi, yi}ni=1 ⇒ f : Rd → R

▶ Train a function f(x) = y ∈ Y predicting a continuous value (Y = R).
▶ Can be extended to multi-value prediction (Y = Rp).

Parameters

▶ Type of function (linear, kernel,
neural network).

▶ Performance measure.

▶ Regularization.

Methods

▶ Least Square (LS).

▶ Ridge regression, Lasso.

▶ Kernel regression.

▶ Deep learning.
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Binary classification

⇒

Objective

{xi, yi}ni=1 ⇒ f : Rd → {−1, 1}

▶ Train a function f(x) = y ∈ Y predicting a binary value (Y = {−1, 1}).
▶ In practice, train a continuous function f : Rd → R and predict with sign(f).

▶ f(x) = 0 defines the boundary on the partition of the feature space.

▶ Optional: provide uncertainty information such as probabilities of each class.

Parameters

▶ Type of function (linear, kernel,
neural network).

▶ Performance measure.

▶ Regularization.

Methods

▶ Bayesian classifier (LDA, QDA)

▶ Linear and kernel discrimination

▶ Decision trees, random forests.

▶ Deep learning.
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Multiclass classification

⇒

Objective

{xi, yi}ni=1 ⇒ f : Rd → {1, . . . ,K}

▶ Train a function f(x) = y ∈ Y predicting an integer value (Y = {1, . . . ,K}).
▶ In practice K continuous score functions fk are estimated and the prediction is

f(x) = argmax
k

fk(x)

▶ Softmax can be used instead of argmax to get probability estimates.

Parameters

▶ Type of function (linear, kernel,
neural network).

▶ Performance measure.

▶ Regularization.

Methods

▶ Bayesian classifier (LDA, QDA)

▶ Linear and kernel discrimination

▶ Decision trees, random forests.

▶ Deep learning.
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Structured learning and prediction

Objective

{xi,yi}ni=1 ⇒ f : X → Y

▶ Train a prediction function f(x) = y ∈ Y on stuctured data.

▶ The structure prediction function is often expressed as

f(x) = argmax
y∈Y

f̃(x,y)

▶ Both X and Y can be spaces of structured data (graph, sequence, tree).

Parameters

▶ Type of function (linear, kernel,
neural network).

▶ Performance measure.

▶ How to find the max value in Y.

Methods

▶ Structured Support Vector Machine
(SSVM)

▶ Conditional Random Fields (CRF)

▶ Convolutional Graph Networks.
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Semi-supervised learning

⇒

Objective

{xi, yi}mi=1, {xi}ni=m+1 ⇒ f : Rd → Y

▶ Train a prediction function f(x) = y ∈ Y from partially labeled data.

▶ Only m < n labeled samples out of the n total samples.

Parameters

▶ Type of function (linear, kernel,
neural network).

▶ Performance measure.

▶ Assumption on label propagation.

Methods

▶ Low-density separation

▶ Laplacian regularization

▶ Heuristic approaches

▶ Generative models
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Other common ML problems

Multi-task learning

{xt
i, y

t
i}ni=1, ∀t ∈ {1, . . . , T} ⇒ ft : X → Yt, ∀t

▶ Train simultaneously T functions ft and share information between the tasks.

Domain Adapation (unsupervised)

{xs
i , y

s
i }ns

i=1, {xt
i}nt

i=1 ⇒ ft : X → Y, ∀t
▶ Train a function ft on unlabeled target data {xt

i}nt
i=1 and related but different

labeled source data {xs
i , y

s
i }ns

i=1.

▶ Variants include Multi-Source DA (MSDA) and semi supervised DA (few labels
available in target).

Transfer Learning

f̃ , {xi, yi}ni=1 ⇒ f : X → Y, ∀t
▶ Train a function f on dataset {xi, yi}ni=1 using a model f̃ already trained on

another tasks (benefit from other training experience)
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Generalization of a model

Acc. 0.89/0.89 train/test Acc. 0.93/0.92 train/test Acc. 0.98/0.88 train/test

Complexity of a model

▶ Under-fitting when the model is too simple.

▶ Over-fitting occurs when the model is too
complex (memorization, bad students
remember only the training samples).

▶ Training data performance is not a good proxy
for testing performance.

▶ We want to predict well on new data!

▶ Parameter and model validation. 0 5 10 15 20 25 30
Complexity of the model
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General references for this course

Machine learning references

▶ Elements of statistical learning (free PDF online) [Friedman et al., 2001].

▶ Pattern recognition and machine learning [Bishop Christopher et al., 2006].

▶ Deep learning (https://www.deeplearningbook.org/) [Goodfellow et al., 2016].

▶ Probabilistic Machine Learning (https://probml.github.io/ ) [Murphy, 2022]

▶ ML course of Andrew Ng (free on Coursera and Youtube).

Applied mathematics

▶ Linear algebra [Petersen et al., 2008]
[Golub and Van Loan, 1996].

▶ Convex Optimization
[Boyd et al., 2004] (Free PDF online).

▶ Statistics [Wasserman, 2013].

Numerical Python

▶ All documentations.

▶ https://scipy-lectures.org/

▶ Google and
https://stackoverflow.com/.
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Machine learning

https://xkcd.com/
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