
1/67

Practical introduction to machine learning
Part 3 : Supervised learning

Rémi Flamary - CMAP, École Polytechnique

Master Data Science, Institut Polytechnique de Paris

October 11, 2023

2/67

Overview of MAP654I

1. Data and Machine Learning problems
▶ Data properties and visualization
▶ Pre-processing
▶ Finding your Machine Learning problem

2. Unsupervised learning
▶ Clustering
▶ Density estimation and generative modeling
▶ Dictionary learning and collaborative filtering
▶ Dimensionality reduction and manifold learning

3. Supervised learning
▶ Bayesian decision and Nearest neighbors
▶ Linear models nonlinear methods for regression and classification
▶ Trees, forest and ensemble methods

4. Validation and interpretation
▶ Performance measures
▶ Models and parameter selection (validation)
▶ Interpretation of the methods

3/67

Overview for the current part

Introduction 2
Supervised data 4
Supervised ML problems and Scikit-learn estimator 6

Bayesian decision and nearest neighbors 11
Predicting from probability distributions 11
Bayesian decision (Naive, LDA, QDA) 13
Nearest neighbors classification and regression (KNN) 20

Empirical Risk Minimization for linear and nonlinear models 22
Empirical Risk Minimization for supervised learning 22
Linear models for regression and classification (LS, Logistic) 25
Regularized Linear models (Ridge, Lasso) 34
Nonlinear models (Kernel SVM, Neural Nets) 40

Ensemble methods 50
Trees, bagging and random forest (RF) 50
Boosting (Adaboost, Gradient Boosting) 54

Conclusion 56

4/67

Supervised dataset

X =



x⊤
1

x⊤
2

.

.

.

x⊤
i

.

.

.

x⊤
n

 , y =



y1

y2

.

.

.
yi

.

.

.
yn



Classification Regression

Supervised learning

▶ The dataset contains the samples {xi, yi}ni=1 where xi is the feature sample and
yi ∈ Y its label.

▶ The values to predict (label) can be concatenated in a vector y ∈ Yn

▶ Prediction space Y can be:
▶ Y = {−1, 1} or Y = {1, . . . , p} for classification problems.
▶ Y = R for regression problems (Rp for multi-output regression).
▶ Structured for structured prediction (graphs,...).

▶ Scatter plots for supervised data (plt.scatter) use color for the label.

5/67

Example of real life dataset

1 2 3 4 5 6 7 8
Day of the week

10
15
20
25
30
35
40
45
50

Us
ag

e
in

 K
W

Week usage of the Drahi building
Week usage
Average usage

Electrical usage of the Drahi X-Novation Center

▶ Demonstrator of Energy4Climate of IP Paris.

▶ Recording of the electrical usage of the building during 1.5 years.

▶ Each day of energy usage contains 144 measurements.
▶ Supervised learning problem from the measurements of the last two days

(d = 288) predict:
▶ If the energy usage will lower of increase on the next day (classification)
▶ The energy usage for the next day (regression).

6/67

Supervised learning

Objective

▶ Training dataset : {xi, yi}ni=1 with observations xi ∈ Rd and labels yi ∈ Y.

▶ Train a function f(·) : Rd → Y on the dataset.

Types of supervised prediction

▶ Classification f(·) predicts a class (discrete output) either binary Y = {−1, 1} or
multiclass Y = {1, . . . , p}.

▶ Regression f(·) predicts a continuous value (Y = R) or several (Y = Rp).

▶ Structured prediction f(·) predicts a structured object (graph, tree, molecule)
(not discussed here).

7/67

Regression

⇒

Objective

{xi, yi}ni=1 ⇒ f : Rd → R

▶ Train a function f(x) = y ∈ Y predicting a continuous value (Y = R).
▶ Can be extended to multi-value prediction (Y = Rp).

Parameters

▶ Type of function (linear, kernel,
neural network).

▶ Performance measure.

▶ Regularization.

Methods

▶ Least Square (LS).

▶ Ridge regression, Lasso.

▶ Kernel regression.

▶ Deep learning.

8/67

Binary classification

⇒

Objective

{xi, yi}ni=1 ⇒ f : Rd → {−1, 1}

▶ Train a function f(x) = y ∈ Y predicting a binary value (Y = {−1, 1}).
▶ In practice, train a continuous function f : Rd → R and predict with sign(f).

▶ f(x) = 0 defines the boundary on the partition of the feature space.

▶ Optional: provide uncertainty information such as probabilities of each class.

Parameters

▶ Type of function (linear, kernel,
neural network).

▶ Performance measure.

▶ Regularization.

Methods

▶ Bayesian classifier (LDA, QDA)

▶ Linear and kernel discrimination

▶ Decision trees, random forests.

▶ Deep learning.

9/67

Multiclass classification

⇒

Objective

{xi, yi}ni=1 ⇒ f : Rd → {1, . . . , p}

▶ Train a function f(x) = y ∈ Y predicting an integer value (Y = {1, . . . , p}).
▶ In practice p continuous score functions fk are estimated and the prediction is

f(x) = argmax
k

fk(x) (1)

▶ Softmax can be used instead of argmax to get probability estimates.

Parameters

▶ Type of function (linear, kernel,
neural network).

▶ Performance measure.

▶ Regularization.

Methods

▶ Bayesian classifier (LDA, QDA)

▶ Linear and kernel discrimination

▶ Decision trees, random forests.

▶ Deep learning.

10/67

Scikit-learn estimator for supervised learning

Scikit-learn object API

▶ Scikit-learn and its API became in recent years a standard for ML in Python.
▶ The estimator is usually used in 2 steps:

1. Creation of the estimator :
est = Estimator(param='parameter value',param2=10)

2. Fitting of the estimator to the data:
est.fit(X,y)

▶ After the fitting step, new attributes from the algorithms have been added to the
object.

Using the estimator in supervised learning

▶ Prediction
Predict the labels (for regression and classification) with est.predict(X) or
est.fit_predict(X)

▶ Probability prediction
On some classification methods the probability of belonging to the classes is
computed with est.predict_proba(X) (predict_log_proba also available).

▶ Decision functions
On some classification methods the score of belonging to the classes is computed
by est.decision_function(X).

10/67

Section

Introduction 2
Supervised data 4
Supervised ML problems and Scikit-learn estimator 6

Bayesian decision and nearest neighbors 11
Predicting from probability distributions 11
Bayesian decision (Naive, LDA, QDA) 13
Nearest neighbors classification and regression (KNN) 20

Empirical Risk Minimization for linear and nonlinear models 22
Empirical Risk Minimization for supervised learning 22
Linear models for regression and classification (LS, Logistic) 25
Regularized Linear models (Ridge, Lasso) 34
Nonlinear models (Kernel SVM, Neural Nets) 40

Ensemble methods 50
Trees, bagging and random forest (RF) 50
Boosting (Adaboost, Gradient Boosting) 54

Conclusion 56

11/67

Probability distribution of the data

0 2 4 6 8 10
0.00

0.01

0.02

0.03

0.04

0.05

Densities p(x) and p(x|y) for p(y) = [1/3, 1/3, 1/3]
p(x|y=1)
p(x|y=2)
p(x|y=3)
p(x)

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0
Densities and p(y|x) for each class

p(y=1|x)
p(y=2|x)
p(y=3|x)

Probability distributions for classification problem

We suppose here that the data is generated following a joint feature/label distribution.

▶ p(x, y) is the joint feature/label probability.

▶ p(x) =
∫
p(x, y)dy is the feature probability (marginal on the feature)

▶ p(y) =
∫
p(x, y)dx is the discrete label probability (marginal on the labels)

▶ p(x|y) = p(x,y)
p(y)

is the conditional probability of x for a given class.

▶ p(y|x) = p(x,y)
p(x)

is the conditional probability of y for a given observation x.

Bayes Theorem : p(x, y) = p(x|y)p(y) = p(y|x)p(x)

12/67

Probability of error and Bayes risk

Error rate of a classifier

Perr(f) = Ex

[
p∑

k=1

(1f(x)̸=k)p(y = k|x)

]
= 1−

∫ p∑
k=1

1f(x)=kp(y = k|x)p(x)dx (2)

▶ 1cond has value 1 when the condition cond is true else 0.

▶ For a given classifier f the error rate is the probability that the classifier makes a
mistake.

▶ Standard measure of performance for a classifier, often estimated empirically and
called accuracy (sklearn.metrics.accuracy_score).

Bayes Risk

A more general expression of the error of a classifier is the Bayes risk expressed as

R(f) = E(x,y)[L(y, f(x))] (3)

▶ L(i, j) is the cost of predicting class j when the true class is i.

▶ When L(i, j) = 1i ̸=j we recover the error rate where all mistakes cost the same.

▶ The Bayes risk can be used to encode asymmetry between the errors of a classifier
(some errors are more serious than others).

13/67

Bayesian decision

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0
Bayes classifier with p(y) = [1/3, 1/3, 1/3]

p(y=1|x)
p(y=2|x)
p(y=3|x)

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0
Bayes classifier with p(y) = [0.02, 0.9, 0.08]

p(y=1|x)
p(y=2|x)
p(y=3|x)

Bayes Classifier

▶ The Bayes classifier is the one minimizing the error rate

min
f

1−
∫ K∑

k=1

1f(x)=kp(y = k|x)p(x)dx

▶ We can see above that for a given x the f(x) that minimize the error is the one
with maximum probability p(y|x) = p(y)p(x|y)/p(x) (p(x) indep. from y).

▶ The Bayes classifier minimizing the problem above is then

f⋆(x) = argmax
k

p(y = k|x) (4)

▶ This is exactly the multiclass classifier formula (1) with fk(x) = p(y = k|x).
▶ In practice the probability distributions are unknown so they have to be estimated.

14/67

Naive Bayes Classifier (NB)

NB Gaussian distributions NB Gaussian classification NB Gaussian distributions NB Gaussian classification

Principle (Tutorial [Murphy et al., 2006])
▶ Assumption in NB Classification is that all variables are independent:

p(y|x) = p(y)

d∏
i=1

p(xi|y)

▶ Probabilities p̂(xi|y) are estimated independently in 1D for each variable xi with
distributions depending on data prior (Gaussian, Bernoulli, Multinomial).

▶ Simple model that works very well on many applications [Zhang, 2004].

▶ Used a lot on textual data with bag of words (binary data for many spam filters)

Gaussian Naive Bayes (sklearn.naive bayes.GaussianNB)

▶ Classes follow Gaussian distributions with diagonal covariances (indep. variables).

▶ The data is modeled as a GMM illustrated above for 2 and 5 classes.

https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html

15/67

Linear Discriminant Analysis (LDA)

LDA distributions LDA classification LDA distributions LDA classification

Principle [Fisher, 1936]

▶ Model the conditional probabilities for each class as

p(x|y = k) = N (µk,Σ)

▶ The covariance matrix Σ is shared across all classes (Homoscedasticity).

▶ The proportions of classes are ϕk = p(y = k) ≥ 0 such that
∑

k ϕk = 1.

▶ The Bayes decision function is taken as

fk(x) = log(p(x|y = k)p(y = k)).

▶ LDA is also known as Fisher Discriminant Analysis (FDA).

▶ Scikit-learn : sklearn.discriminant analysis.LinearDiscriminantAnalysis

https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html

16/67

LDA discriminant functions

Score functions and simplifications

▶ The score function fk(x) can be expressed as

fk(x) = log(ϕk) + log(p(x|y = k))

= log(ϕk)−
d

2
log(2π)− 1

2
log det(Σ)− 1

2
(x− µk)

TΣ−1(x− µk)

▶ Removing the terms that do not depend on k and do not change the decision we
get the following equivalent score function

fk(x) = µ⊤
k Σ

−1x+ log(ϕk)−
1

2
µ⊤

k Σ
−1µk = w⊤

k x+ bk (5)

▶ The decision function is linear because the quadratic terms are constant wrt k
when the Gaussians have the same covariance Σ.

LDA for binary classification

▶ Parameters for the Gaussian distributions are: ϕ,Σ,µ1,µ−1,

▶ Decision function f can be expressed as : f(x) = sign(f1(x)− f−1(x))

▶ It can be expressed as f(x) = sign(w⊤x+ b) = sign(
∑

k wkxk + b) with

w = Σ−1(µ1 − µ−1), b = −1

2
w⊤(µ1 + µ−1) + log ϕ1 − log ϕ−1

17/67

LDA in practice

LDA as dimensionality reduction [Rao, 1948]

▶ We want to find a subspace that maximizes the distance between the means of
the classes in the projected space while minimizing the variance of each class.

▶ The optimization problem can be expressed as

max
D,D⊤D=IK−1

⟨Σb,DD⊤⟩
⟨Σ,DD⊤⟩

where Σb =
∑

k ϕk(µk − µ̄)(µk − µ̄)⊤ with µ̄ =
∑

k ϕkµk.

▶ The solution D⋆ contains the eigenvector with largest eigenvalues for the
generalized eigen-decomposition of Σ−1Σb.

Estimating the parameters

▶ Gaussian distributions for each class can be estimated by their empirical mean µ̂
and covariance Σ̂ estimators.

▶ In high dimension good estimators for covariances require a large number of
samples but still might lead do degenerate matrices (with numerical problems).

▶ In this case a good strategy is to perform a shrinkage of the matrix toward the
identity by using (1− α)Σ̂+ αId instead of Σ̂.

18/67

Quadratic Discriminant Analysis (QDA)
QDA distributions QDA classification QDA distributions QDA classification

Principle (Tutorial [Tharwat, 2016])

▶ Bayesian decision similar to LDA but where the conditional probabilities are :

p(x|y = k) = N (µk,Σk)

▶ The score functions fk(x) can be expressed as

fk(x) = log(ϕk)−
d

2
log(2π)− 1

2
log det(Σk)−

1

2
(x− µk)

TΣk
−1(x− µk)

▶ When the covariances Σk are different the quadratic terms do not cancel each
other and the final decision is quadratic.

▶ More sensitive to the curse of dimensionality than LDA.

▶ Scikit-learn : sklearn.discriminant analysis.QuadraticDiscriminantAnalysis

https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html

19/67

Bayesian decision on energy usage dataset

0.0 0.2 0.4 0.6 0.8 1.0
α

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

LDA accuracy as a function of shrinkage α
ACC on train
ACC on test

−2.00 −1.75 −1.50 −1.25 −1.00 −0.75 −0.50 −0.25 0.00
Time (in days)

−0.08
−0.06
−0.04
−0.02

0.00
0.02
0.04
0.06

Est. LDA coefficients w for α=0.8

α=0.1
α=0.8
α=1

Application to energy usage classification

▶ Objective : predict if the energy usage will increase on the next day using the
previous two days (n = 161, d = 288).

▶ Gaussian Naive Bayes classifier provided an accuracy on test data of : 0.59

▶ LDA with no shrinkage of the covariance gives an accuracy of : 0.54

▶ LDA with a shrinkage of α = 0.8 gives an accuracy of : 0.75

▶ QDA with no shrinkage gives an accuracy of : 0.48

▶ QDA with a shrinkage of α = 0.8 gives an accuracy of : 0.74

▶ Warning : in high dimension probability density estimation is hard,
regularize/shrink your covariances.

20/67

K-nearest neighbors classification (KNN)

KNN classification (K=1) KNN classification (K=5) KNN classification (K=10) KNN classification (K=10)

Principle [Fix and Hodges, 1989]

▶ Estimate locally the conditional densities p̂(x|y = k) as

p̂(x|y = k) =
1

K

∑
i∈NK(x)

1yi=k (6)

where NK(x) contains the index of the K nearest samples to x in the dataset.

▶ The density estimation is a special case of KDE with adaptive kernel bandwidth.

▶ Instead of uniform voting one can use : p̂(x|y = k) =

∑
i∈NK (x)

1
∥x−xi∥

1y1=k∑
i∈NK (x)

1
∥x−xi∥

▶ Consistent estimator but requires the whole dataset for prediction (complexity).

▶ Scikit-learn implementation : sklearn.neighbors.KNeighborsClassifier

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

21/67

K-nearest neighbors for regression

KNN regression (K=1) KNN regression (K=5) KNN regression (K=10) KNN regression (K=20)

Principle

▶ The predicted value for a given samples x an be computed as:

f̂(x) =
1

K

∑
i∈NK(x)

yi (7)

▶ This is the expected value of y on the distribution in the neighborhood NK

▶ For K = 1 the partition of the space is a Voronoi Diagram with prediction
piecewise constant in each cell (for regression and classification).

▶ Smoother prediction using kernel or distance-based weighting similar to KNN

classification with f̂(x) =

∑
i∈NK (x)

k(xi,x)yi∑
i∈NK (x)

k(xi,x)
.

▶ Scikit-learn implementation : sklearn.neighbors.KNeighborsRegressor

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html

21/67

Section

Introduction 2
Supervised data 4
Supervised ML problems and Scikit-learn estimator 6

Bayesian decision and nearest neighbors 11
Predicting from probability distributions 11
Bayesian decision (Naive, LDA, QDA) 13
Nearest neighbors classification and regression (KNN) 20

Empirical Risk Minimization for linear and nonlinear models 22
Empirical Risk Minimization for supervised learning 22
Linear models for regression and classification (LS, Logistic) 25
Regularized Linear models (Ridge, Lasso) 34
Nonlinear models (Kernel SVM, Neural Nets) 40

Ensemble methods 50
Trees, bagging and random forest (RF) 50
Boosting (Adaboost, Gradient Boosting) 54

Conclusion 56

22/67

Empirical Risk Minimization

0.0 0.2 0.5 0.8 1.0
x

0.6

0.7

0.8

0.9

1.0

1.1

y

1D regression data

0.3 0.4 0.5 0.6 0.7
a

0.3
0.3
0.4
0.5
0.5
0.6
0.6
0.7
0.7

b

Risk R(fa, b), f(x) = ax+ b

θ ⋆

0.3 0.4 0.5 0.6 0.7
a

0.3
0.3
0.4
0.5
0.5
0.6
0.6
0.7
0.7

b

Empirical Risk R̂(fa, b) with n=2

θ ⋆

̂θ

0.3 0.4 0.5 0.6 0.7
a

0.3
0.3
0.4
0.5
0.5
0.6
0.6
0.7
0.7

b

Empirical Risk R̂(fa, b) with n=10

θ ⋆

̂θ

Principle

▶ In practice the Bayes risk is not known, we only have access to a sampling
{xi, yi}i of the true distribution.

▶ We search for a prediction function f that minimize the expected loss over the
empirical distribution (training data):

min
f

{
R̂(f) =

1

n

n∑
i=1

L(yi, f(xi))

}
(8)

▶ L is a measure of discrepancy between the true and predicted values.

▶ The empirical risk R̂(f) is a good approximation of R(f) for large n.

▶ Usually we use a parametric function fθ and optimize its parameters θ.

23/67

Losses for regression

−2 0 2
e= y− ̂y

0

1

2

3

4

Regression losses
Square
Absolute
ε-insensitive
Huber
Log-Cosh

0.3 0.4 0.5 0.6 0.7
a

0.3
0.3
0.4
0.5
0.5
0.6
0.6
0.7
0.7

b

Square loss ERM with n=2

0.3 0.4 0.5 0.6 0.7
a

0.3
0.3
0.4
0.5
0.5
0.6
0.6
0.7
0.7

b

Absolute loss ERM with n=2

Penalizing prediction error

▶ For regression the error can be defined as : e = y − f(x) = y − ŷ

▶ Typical losses :

Loss L(y, ŷ) Smooth Convex

Square loss (MSE, L2) 1
2
(y − ŷ)2 ++ ++

Absolute deviation (MAE) |y − ŷ| - +
ϵ-insensitive max(0, |y − ŷ| − ϵ) - +

Huber loss

{
1
2
(y − ŷ)2 for |y − ŷ| ≤ δ,

δ(|y − ŷ| − 1
2
δ), otherwise.

+ ++

Log-Cosh log(cosh(y − ŷ)) ++ ++

24/67

Losses for classification

−2 0 2
e= y ̂y

0

1

2

3

4

5
Regression losses

0-1 loss
Hinge
Squared Hinge
Logistic
Sigmoid

-2.0 -1.0 0.0 1.0 2.0
a

-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

b

0-1 loss ERM with n=10

-2.0 -1.0 0.0 1.0 2.0
a

-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

b

Hinge loss ERM with n=10

-2.0 -1.0 0.0 1.0 2.0
a

-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

b

Logistic loss ERM with n=10

Penalizing prediction error

▶ For binary classification ({−1, 1}) the error can be defined using : e = yf(x) = yŷ

▶ Typical losses are asymmetric wrt 0 :

Loss L(y, ŷ) Smooth Convex

0-1 loss 1
2
(1− sign(yŷ) – –

Hinge max(0, 1− yŷ) - +
Squared Hinge max(0, 1− yŷ)2 + +
Logistic log(1 + exp(−yŷ)) + +
Sigmoid (1− tanh(yŷ))/2 + -

▶ For multiclass classification the classical loss is the categorical cross-entropy :

L(y, f(x)) = −
p∑

k=1

δk=y log(fk(x))

where the output of f contains probability estimates (softmax).

25/67

Linear prediction model

0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

1D linear function
Linear (b= 0)
Affine (b≠ 0)

0.0 0.5 1.0 1.5 2.0
x

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

y

1D classification function
f(x) = ax+ b
sign(f(x))

x1

0.0 0.5 1.0 1.5 2.0

x 2

0.0
0.5

1.0
1.5

2.0

y

0
1
2
3

2D linear function
Linear (b=0)
Affine (b≠ 0)

x1

0.0 0.5 1.0 1.5 2.0

x 2

0.0
0.5

1.0
1.5

2.0

y

−2
−1
0
1
2

2D classification function

f(x) =wTx+ b
sign(f(x)))

Linear (affine) function

fθ(x) =

d∑
i=1

wixi + b = x⊤w + b = [x⊤, 1]θ (9)

▶ w ∈ Rd a vector defining an hyperplane in Rd (w orthogonal to the hyperplane).

▶ b ∈ R a bias term displacing the function along the normal w of the hyperplane.

▶ All the parameters can be stored in a unique vector θ⊤ =
[
w⊤, b

]
.

▶ Linear models are interpretable (look at the weights wi and their sign).

▶ Estimating the bias b can be done using the data matrix X̃ = [X,1n].
▶ Linear models from sklearn.linear_model have the following attributes after fitting

▶ model.coef_ : contains the weight coefficients w ∈ Rd of the variables.
▶ model.intercept_ : contains the bias b (also called the intersect).

26/67

Least Square regression (LS)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.6

0.7

0.8

0.9

1.0

1.1

1.2

y

1D regression data

0.0 0.2 0.4 0.6 0.8 1.0
x

0.6

0.8

1.0

1.2

y

1D regression model
Model
Residual ei
Samples

x1

−2
0

2 x 2

−2
0

2
4

y

0
1
2
3
4

2D regression data

x1

−2
0

2
4

x 2

−2
0

2
4

y

0
1
2
3
4

2D regression model

Residual ei
Samples
Model

Principle

min
w,b

1

n

n∑
i=1

(yi −w⊤xi − b)2 (10)

▶ Also called Ordinary Least Squares Linear Regression (OLS).

▶ Minimize the mean of the squared prediction errors ei = yi −w⊤xi − b (MSE).

▶ Matrix and linear reformulation:

min
w,b

1

n
∥y −Xw − b1n∥2 ≡ min

θ

1

n
∥y − X̃θ∥2 (11)

where X̃ = [X,1n] is the data matrix with a concatenated column of ones.

▶ Scikit-learn : sklearn.linear_model.LinearRegression

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

27/67

Solving the least square

Minimum of a convex function
Let J(θ) be a smooth convex function Rd+1 → R R. θ⋆ is a minimum J(θ) if and
only if

∇J(θ⋆) = 0 (12)

where ∇J(θ) ∈ Rd+1 is the gradient of the function ∇J(θ)i =
∂J(θ)
∂θi

∀i

Gradient and solution for Least Square

▶ The objective function can be expressed as:

J(θ) =
1

n
∥y − X̃θ∥2 =

1

n

(
y⊤y − 2θ⊤X̃⊤y + θ⊤X̃⊤X̃θ

)
▶ The gradient of the function is

∇J(θ) =
2

n

(
−X̃⊤y + X̃⊤X̃θ

)
▶ Least Square estimator recovered by setting ∇J(θ) = 0

X̃⊤y = X̃⊤X̃θ̂ → θ̂ = (X̃⊤X̃)−1X̃⊤y (13)

▶ Warning : this solution requires that X̃ be of rank d+ 1 (at least n ≥ d+ 1).

28/67

Geometric interpretation of Ordinary Least Square

▶ We search for a vector X̃θ̂ ∈ Rn in the
span Ω = span(X̃).

▶ Minimizing the norm of the error
e = y − X̃θ̂ corresponds to finding the
orthogonal projection on Ω.

▶ For an optimal solution θ̂, e is orthogonal
to any vector in Ω.

▶ This means that the residual e = y − X̃θ̂ should be orthogonal to any of the
columns in X̃ which implies that

X̃⊤(y − X̃θ̂) = 0

▶ This orthogonality conditions allows to recover geometrically the solution

θ̂ = (X̃⊤X̃)−1X̃⊤y

that is the solution of the LS optimization problem (10).

29/67

Probabilistic interpretation of Least Square

Observation model and likelihood

▶ The model is supposed to be linear with Gaussian IID noise, that is

p(y|X̃) = N (X̃θ, σ2In)

▶ The log-likelihood for parameters θ and σ2 can be expressed as

L(θ, σ2) = −n

2
log(2π)− n log(σ)− 1

2σ2
∥y − X̃θ∥2

Maximum likelihood

▶ Estimating the parameters θ and σ2 is done by maximum likelihood that is by
solving

max
θ,σ2

L(θ, σ2)

▶ The solution is recovered by computing the gradients w.r.t. θ and σ2 and setting
them to 0 (and checking that it is a maximum with the Hessian). The optimal
values are :

θ̂ = (X̃⊤X̃)−1X̃⊤y

σ̂2 =
1

n
∥y − X̃θ∥2

30/67

Logistic regression

-2.0 0.0 2.0
x

-1.0

1.0

y

1D classification data

-2.0 0.0 2.0
x

-1.0

-0.5

0.0

0.5

1.0

y

1D logistic model

Linear model
̂p(y= 1|x)

Threshold

x1

−2
0

2 x 2

−2
0

2
4

y

−1

1

2D classification data

x1

−2
0

2
4

x 2

−2
0

2
4

y

−1

0

1

2D classification model

Linear model
̂p(y= 1|x)

Principle

min
w,b

1

n

n∑
i=1

log(1 + exp(−yi(w
⊤xi + b)) (14)

▶ Model the conditional probabilities for binary classes {−1, 1} with

p(y = 1|x) =
1

1 + exp(−w⊤x− b)
, p(y = −1|x) =

1

1 + exp(w⊤x+ b)
(15)

▶ Bayes decision : f(x) = sign(p(y = 1|x)− p(y = −1|x)) that is equivalent to
f(x) = sign(w⊤x+ b)

▶ Parameters ŵ, b̂ are optimized by maximum likelihood corresponding to the
optimization problem (14).

▶ Scikit-learn : sklearn.linear_model.LogisticRegression

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

31/67

Solving the logistic regression

Recovering the MLE optimization problem

▶ The log-likelihood from the logistic regression can be expressed as:

L(w, b) =
∑

i,yi=1

− log(1 + exp(−w⊤xi − b)) +
∑

i,yi=−1

− log(1 + exp(w⊤xi + b))

= −
n∑

i=1

log(1 + exp(−yi(w
⊤xi − b)))

▶ So maximizing the likelihood above is equivalent to minimizing its negative in
Equation (14).

Gradient of the objective function

▶ The gradient of J(θ) defined in (14) can be expressed as

∇θJ(θ) = − 1

n
X̃⊤Py (16)

where P is a diagonal matrix of elements pi
1+pi

with pi = exp(−yi(w
⊤xi + b)).

▶ Setting the gradients ∇θJ(θ) = 0 leads to a highly nonlinear equations so there
is no close form solution as in LS.

32/67

Numerical optimization with gradient descent

w

0.0 0.5 1.0 1.5 2.0
b−4

−2
0

2
4
6
8
10

Cost function

0.0 0.5 1.0 1.5
w

−4

−3

−2

−1

0

1

b

1020
100

500
1000

Steepest descent

0.0 0.5 1.0 1.5
w

−4

−3

−2

−1

0

1

b

13
5

6
1

23

(Quasi-)Newton descent
Newton
L-BFGS

0.0 0.5 1.0 1.5
w

−4

−3

−2

−1

0

1

b

5
20

1001000

Stochastic Gradient Descent
SGD

Principle

▶ Optimize a smooth function J(θ) using its gradient (or its approximation).

▶ Initialize a vector θ(0) and update it at each iteration k as:

θ(k+1) = θ(k) + µkdk (17)

where µk is a step and dk is a descent direction (d⊤
k ∇J(θ(k)) < 0).

▶ Classical descent directions are :
▶ Steepest descent : dk = −∇J(θ(k))
▶ Newton: dk = −(∇2J(θ(k)))−1∇J(θ(k)) where ∇2J(θ(k)) is the Hessian.
▶ Quasi-Newton (QN) : dk = −B∇J(θ(k)) where B is an approximation of the

inverse of the Hessian.
▶ Stochastic Gradient Descent (SGD) : dk = −∇J̃(θ(k)) with approx. gradient.

33/67

Multinomial logistic regression
Data

x1

−2 0 2 4

x 2

−2
0

2
4

y

−5

0

5

2D classification score

x1

−2 0 2 4

x 2

−2
0

2
4

y

0

1

2D classification proba Multinomial LR prediction

Principle

min
W,b

− 1

n

n∑
i=1

p∑
k=1

δyi=k log(pW,b(y = k|xi)) (18)

▶ MLE of parameters where W = [w1, . . . ,wp] and b = [b1, . . . , bp]
⊤ the linear

parameters and the conditional probabilities are modeled as

pW,b(y = k|x) =
exp(w⊤

k x+ bk)∑p
j=1 exp(w

⊤
j x+ bj)

(19)

▶ The operator above is called the softmax of predictions w⊤
k x+ bk per classes.

▶ Problem (18) is and ERM where the loss function is the Kullback-Leibler between
the one-hot encoding of the labels and the softmax output.

▶ Scikit-learn : sklearn.linear_model.LogisticRegression (with multiclass labels)

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

34/67

Regularization for supervised learning

Acc. 0.89/0.89 train/test Acc. 0.93/0.92 train/test Acc. 0.98/0.88 train/test

0 5 10 15 20 25 30
Complexity of the model

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Accuracy on train/test datasets
Train
Test

Empirical risk minimization with regularization

min
f

n∑
i=1

L(yi, f(xi)) + λΩ(f) (20)

▶ L(· · ·) a loss function measure prediction performance on the training samples.

▶ Ω(·) is a measure of complexity of the function weighted by λ ≥ 0.

▶ For a given λ, (20) is an upper bound on the true expected risk.

▶ In practice the regularization is often applied on the parameters θ of the function
fθ leading to the following optimization problem

min
θ

n∑
i=1

L(yi, fθ(xi)) + λΩ(θ) (21)

35/67

Regularizing linear models

Complexity of a linear model

fθ(x) =

d∑
i=1

wixi + b = x⊤w + b

▶ A measure of complexity of a function is how quick it will change its value.

▶ This can be measured as the gradient of the function w.r.t. its input :

∇fθ(x) = w

▶ On measure of complexity is then to use the norm of the linear parameters w.

Common regularizations for linear models

▶ Ridge : Ω(w) = ∥w∥2 =
∑

j w
2
j

▶ Lasso : Ω(w) = ∥w∥1 =
∑

j |wj |
▶ Mahalanobis : Ω(w) = w⊤Σw

▶ Separable : Ω(w) =
∑

j h(|wj |)
▶ Group-Lasso : Ω(w) =

∑
g∈G ∥wg∥

▶ L0 pseudo-norm : Ω(w) = ∥w∥0 =
∑

j 1wj ̸=0 −2 0 2
w

0

1

2

3

4

Regularizations (1D)
Ridge
Lasso
h(w) = √ |w|
h(w) = 1w≠ 0

36/67

Ridge regression

x1

0
2

4

x 2

−1
0

1
2

3

y

0

2

4

2D Data

x1

−2
0

2
4

x 2

−2
0

2
4

y

0
2
4

Regression models
Least Square
Ridge

10−3 100 103

λ

1.2

1.4

1.6

1.8

2.0

2.2

M
SE

MSE on train/test datasets
Train
Test

10−3 100 103

λ

0.0

0.2

0.4

0.6

Ridge regularization path
w1
w2

Principle

min
w,b

1

n

n∑
i=1

(yi −w⊤xi − b)2 + λ∥w∥2 (22)

▶ Quadratic penalization limits the complexity of the model (λ = 0 is LS).

▶ Makes the optimization problem strictly convex even when n < d.

▶ Solutions without and with bias are

ŵ = (X⊤X+ nλId)
−1X⊤y, θ̂ = (X̃⊤X̃+ nλS)−1X⊤y (23)

Where S ∈ Rd+1×d+1 is a matrix defined as Si,j = 1 if i = j ≤ d else 0.

▶ Ridge with λ =
σ2
n

σ2
w

is actually a MAP with a prior p(w) ∼ N (0, σ2
wI) and a

known variance of the additive noise of σ2
n.

▶ Scikit-learn implementation (alpha is λ) : sklearn.linear_model.Ridge(alpha=1)

https://scikit-learn.org/stable/modules/generated/https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html.html

37/67

Lasso regression

x1

−2 0 2
4

x 20
2

4

y

0

2

4

Data (d= 2 + 8 noisy features)

x1

−2 0 2
4

x 2

−2
0

2
4

y

0
2
4

Regression models
Least Square
Lasso

10−2 100

λ

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

M
SE

MSE on train/test datasets
Train
Test

10−2 100

λ

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

Lasso regularization path
w1
w2

Principle [Tibshirani, 1996]

min
w,b

1

n

n∑
i=1

(yi −w⊤xi − b)2 + λ

d∑
j=1

|wj | (24)

▶ L1 norm ∥w∥1 =
∑

j |wj | regularization is non-smooth in wj = 0, ∀j.
▶ For a large enough λ the solution of the problem is sparse (some components ŵj

of ŵ are exactly equal to 0).

▶ Under some conditions, when the true model w⋆ is sparse the true support of w⋆

can be recovered [Zhao and Yu, 2006].

▶ Lasso regularization can be used for classification [Koh et al., 2007].

▶ Scikit-learn implementation (alpha=λ) : sklearn.linear_model.Lasso

▶ Efficient solver for large/sparse problems : celer.Lasso [Massias et al., 2020]

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://mathurinm.github.io/celer/

38/67

Solution for the Lasso

Why is the Lasso sparse?

▶ L1 regularization is non-smooth in wj = 0, ∀j
which creates attraction points toward sparsity.

▶ Lasso Problem (24) is equivalent to

min
w,b,∥w∥1≤τ

1

n

n∑
i=1

(yi −w⊤xi − b)2 (25)

▶ The geometrical constraints promotes sparse w
on the axis.

Regularization constraint
Squared error
Problem solution

Optimization algorithms

▶ Coordinate descent Optimize iteratively each wj independently (sklearn).

▶ Homotopy Methods Create iteratively solutions along the regularization path
using the fact that it is piece-wise linear (sklearn.linear_model.lasso_path).

▶ Proximal algorithms Extension of gradient descent to non-smooth optimization
with stochastic solver for large scale datasets (sklearn.linear_model.SGDRegressor).

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.lasso_path.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html

39/67

Application on energy usage data

y

̂ y

LS predictions, R2=0.32

y
̂ y

Ridge predictions, R2=0.76

y

̂ y

Lasso predictions, R2=0.78

−2.0 −1.5 −1.0 −0.5 0.0
0

10

20

30

40

50

60
Examples with large error

Application to energy usage prediction

▶ Learn to predict total energy usage for the next day using recordings of usage
from the last two days.

▶ Prediction performance measured with the coefficient of determination R2 (1 is
perfect, 0 is random).

▶ Comparison for Least Square (R2 = 0.32), Ridge (R2 = 0.76) and Lasso
(R2 = 0.78), Ridge and Lasso are far better on large data (d = 288).

▶ Parameters λ selected through cross validation (see next course).

▶ Plot the predictions and true values (perfect prediction on the red line).

▶ Plot the linear models w for all the methods (lasso selects 31/288 features).

39/67

Application on energy usage data

−2.0 −1.5 −1.0 −0.5 0.0
Time (day)

−40

−20

0

20

40

Predictor weights w for LS

−2.0 −1.5 −1.0 −0.5 0.0
Time (day)

−10

−5

0

5

10

15
Predictor weights w for Ridge

−2.0 −1.5 −1.0 −0.5 0.0
Time (day)

−10

0

10

20

30
Predictor weights w for Lasso

Application to energy usage prediction

▶ Learn to predict total energy usage for the next day using recordings of usage
from the last two days.

▶ Prediction performance measured with the coefficient of determination R2 (1 is
perfect, 0 is random).

▶ Comparison for Least Square (R2 = 0.32), Ridge (R2 = 0.76) and Lasso
(R2 = 0.78), Ridge and Lasso are far better on large data (d = 288).

▶ Parameters λ selected through cross validation (see next course).

▶ Plot the predictions and true values (perfect prediction on the red line).

▶ Plot the linear models w for all the methods (lasso selects 31/288 features).

40/67

Learning nonlinear models

Optimization problem

min
θ

n∑
i=1

L(yi, fθ(xi)) + λΩ(fθ) (26)

▶ where fθ is a nonlinear function parametrized by θ.

▶ Optimization problem can become non-convex and/or non-smooth.

▶ Different approaches depend on the modeling of the non-linear function fθ.

What kind of nonlinearity ?

▶ Non-linear basis : ϕj(x) are nonlinear functions and the model is expressed as

fθ(x) =
d′∑

j=1

ϕj(x)wj + b (27)

that can be seen as pre-processing of the data (all linear methods can be applied).

▶ Kernel methods : prediction function lies in a Reproducible Kernel Hilbert
Space (RKHS) and non-linearity depends on the choice of the kernel.

▶ Neural network : design the non-linear function as a combination of linear
operators and nonlinear transformations. Allows for learning complex feature
extraction and taking account the structure of the data.

41/67

Representation theorem for kernel methods

Theorem (simplified from [Schölkopf et al., 2001, Boser et al., 1992])

Let H be a Reproducible Kernel Hilbert Space (RKHS) associated to the positive
definite kernel k defined on Rd × Rd and a sampling {xi, yi}i. Minimizing the
following optimization problem

min
f∈H

n∑
i=1

L(yi, f(xi)) + h(∥f∥H) (28)

where h is a monotonically increasing function leads to an optimal solution that can be
expressed as

f̂(x) =

n∑
i=1

α̂ik(x,xi) + b̂ (29)

where α̂ ∈ Rn and b̂ are the parameters of the function.

Discussion on Support Vector Machines (SVM)

▶ The ”kernel trick” used in RKHS allows us to have a non-linear implicit feature
extraction ϕ(x) = k(x, ·).

▶ The norm ∥f∥H in the RKHS can be expressed for a given f ∈ H as

∥f∥2H =

n,n∑
i,j

αiαjk(xi,xj)

▶ The function f is described through its weight on k(x,xi) the similarity measure
with the training samples denoted as support vectors when αi ̸= 0.

42/67

Kernels as feature extraction

−1 0 1 2 3
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Kernels k(x, x0) with x0=1
Linear
RBF
Sigmoid
Laplacian

−2 0 2 4 −2
0

2
4

0.2
0.4
0.6
0.8
1.0

RBF Kernel k(x, x0), x0=[1,1]

−2 0 2 4 −2
0

2
4

0.2
0.4
0.6
0.8
1.0

Laplacian Kernel k(x, x0), x0=[1,1]

−2 0 2 4 −2
0

2
4

10
20
30

Polynomial Kernel k(x, x0), x0=[1,1]

Common kernels (sklearn.metrics.pairwise)

▶ Linear : k(x,x′) = x⊤x′ (recover linear models where w =
∑

i αixi)

▶ Radial Basis Function (RBF) or Gaussian : k(x,x′) = exp(−γ∥x− x′∥2)
▶ Polynomial : k(x,x′) = (γx⊤x′ + c0)

d

▶ Laplacian : k(x,x′) = exp(−γ∥x− x′∥)
▶ Cosine : k(x,x′) = x⊤x′

∥x∥∥x′∥

▶ Sigmoid : k(x,x′) = tanh(γx⊤x′ + c0)

Numerous kernels have been designed by domain experts for specific applications.

43/67

Kernel methods for regression (KRR, SVR)

Data KRR RBF γ=1,λ=1 KRR Poly γ=5,λ=1 SVR RBF γ=1,λ=1

Kernel Ridge Regression (KRR) ([Murphy, 2012, Chap 14.3])

min
f∈H

1

n

n∑
i=1

(yi − f(xi))
2 + λ∥f∥2H (30)

▶ Optimal parameters α̂ = (K+ nλIn)
−1y with K the kernel matrix.

▶ There exist a Lasso counterpart for sparse α̂ [Guigue et al., 2005].

▶ Scikit-learn implementation (alpha=λ) : sklearn.kernel_ridge.KernelRidge

Support Vector Regression (SVR) [Drucker et al., 1997]

▶ Similar to KRR but using the ϵ-invariant loss L(y, ŷ) = max(0, |y − ŷ| − ϵ).

▶ Solution α̂ is sparse (weight on support vectors) and less sensitive to outliers.

▶ Scikit-learn implementation (C= 1
λ
): sklearn.svm.SVR

https://scikit-learn.org/stable/modules/generated/sklearn.kernel_ridge.KernelRidge.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

44/67

Support Vector Classification (SVC)
SVC RBF Support vectors

Support

SVC RBF γ=1,λ=1.0 SVC RBF γ=20,λ=1.0 SVC Poly γ=1,λ=1.0

Principle [Boser et al., 1992]

min
f∈H

1

n

n∑
i=1

max(1− yif(xi), 0) + λ∥f∥2H (31)

▶ The optimization will promote a large margin between the classes.

▶ The problem (31) can be reformulated as the following convex Quadratic Program

max
0≤β≤ 1

2nλ
,β⊤y=0

n∑
j

βj −
1

2

n,n∑
i,j

βiβjyiyjk(xi,xj) (32)

with the solution f̂(x) using the weights α̂i = β̂iyi.

▶ Consistent estimator (converges to Bayes for large n) [Steinwart, 2005].

▶ Scikit-learn implementation: sklearn.svm.SVC

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

45/67

Support Vector Machines

−2 0 2 4 −2
0

2
4

0.2
0.4
0.6
0.8
1.0

RBF Kernel k(x, x0), x0=[1,1] KRR RBF γ=1,λ=1 SVC RBF Support vectors
Support

SVC RBF multi-class

SVM and extensions

▶ Multi-class classification [Weston and Watkins, 1998] or One-Against-All strategy
[Hsu and Lin, 2002] (default in Scikit-learn).

▶ Estimation of probability of classes done with a logistic regression on the
prediction function f [Platt et al., 1999].

▶ Squared SVM (squared hinge loss) lead to a differentiable problem can be solved
with gradient descent [Chapelle, 2007].

▶ Multiple Kernel Learning allows for learning the feature extraction and selecting
the kernel parameter [Bach et al., 2004, Rakotomamonjy et al., 2008].

▶ Kernels can be approximated using Nyström method [Williams and Seeger, 2001]
or Random Fourier Features (RFF) [Rahimi et al., 2007] for learning on large
scale datasets (sklearn.kernel_approximation).

46/67

Neural Networks
MLP Relu 2 hidden layers MLP Relu 2 hidden layers

Multi-Layer Perceptron (MLP) [Goodfellow et al., 2016, Chapter 6]

min
θ

n∑
i=1

L(yi, fθ(xi)) + λΩ(θ) (33)

▶ Where the function fθ is expressed as

fθ(x) = fK(fK−1(. . . (f1(x)))), with fk(x) = σk(Wkx+ bk) (34)

▶ The parameters are θ = {Wk,bk}k and σk are non-linear activations.

▶ Highly non-convex and non-smooth optimization problem in general.

▶ MLP are universal approximators [Hornik et al., 1989].

▶ Scikit-learn : sklearn.neural_network.MLPClassifier / MLPRegressor

▶ Implementation faster with GPU-compatible toolboxes (Pytorch/tensorflow).

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

47/67

Neural Networks design

Major architectures

▶ Convolutional layers [LeCun et al., 1998] for signal and images use a convolution
of the signal x instead of a general linear operator :

fk(x) = σk(wk ∗ x+ bk)

▶ Fully convolutional network (U-Nets) proposed for image segmentation and
processing [Long et al., 2015, Ronneberger et al., 2015].

▶ Residual Layers [He et al., 2016] help train deeper network and avoid vanishing
gradients (also facilitates recovering the identity function) :

fk(x) = σk(Wkx+ bk) + x

▶ Recurrent Neural Nets (RNN) [Rumelhart et al., 1986] and Long short-term
memory (LSTM) [Hochreiter and Schmidhuber, 1997] for modeling sequences in
signals and Natural Language Processing.

▶ Attention models (transformers) is pointwise product in the layers to focus on
some features/parts of the embedding [Vaswani et al., 2017].

Practical implementation

▶ ReLU activation σ(x) = max(0, x) allows for deeper networks
[Glorot et al., 2011, He et al., 2015]

▶ Initialization of the parameters is important [Glorot and Bengio, 2010].

48/67

Optimization of deep neural networks

Stochastic Gradient Descent (SGD) on large scale datasets

▶ Principle : Never compute the full gradient, only on samples (1 or minibatch).

▶ Going through the whole dataset is called an epoch (numerous gradient steps).

▶ Fast convergence with averaging (SAG, SRVG, SAGA)
[Johnson and Zhang, 2013, Roux et al., 2012, Defazio et al., 2014].

▶ State of the art algorithm for linear SVM, logistic regression, least square.

▶ Classification (SVM, Logistic) : sklearn.linear model.SGDClassifier.

▶ Regression (least square, huber) : sklearn.linear model.SGDRegressor.

Gradient descent for deep learning

▶ Stochastic Gradient Descent and variants work very well on continuous,
non-smooth non-convex problems [Bottou, 2010].

▶ Use fixed step or change of step size along iterations.
▶ Several momentum, averaging and adaptive step size strategies:

▶ Momentum and Accelerated gradients [Nesterov, 1983]
▶ RMSPROP [Tieleman and Hinton, 2012].
▶ Adaptive gradient step ADAGRAD [Duchi et al., 2011].
▶ Adaptive Moment estimation ADAM [Kingma and Ba, 2014].

▶ Most optimization strategies implemented in Pytorch/tensorflow.

49/67

Regularization of deep neural networks

MLP epoch=10 MLP epoch=50 MLP epoch=100 MLP epoch=500

Regularization strategies [Goodfellow et al., 2016, Chapter 7]

▶ Ridge (weight decay) or Lasso on the parameters Wk for smooth prediction.

▶ Early stopping along the epochs (using validation set) [Yao et al., 2007].

▶ Dropout shuts down some neurons during training [Srivastava et al., 2014].

▶ Data Augmentation uses transformation of data (signals) to create new samples
and promote invariance [Shorten and Khoshgoftaar, 2019].

▶ Adversarial regularization penalize the classification error of (virtual) adversarial
examples [Miyato et al., 2018].

49/67

Section

Introduction 2
Supervised data 4
Supervised ML problems and Scikit-learn estimator 6

Bayesian decision and nearest neighbors 11
Predicting from probability distributions 11
Bayesian decision (Naive, LDA, QDA) 13
Nearest neighbors classification and regression (KNN) 20

Empirical Risk Minimization for linear and nonlinear models 22
Empirical Risk Minimization for supervised learning 22
Linear models for regression and classification (LS, Logistic) 25
Regularized Linear models (Ridge, Lasso) 34
Nonlinear models (Kernel SVM, Neural Nets) 40

Ensemble methods 50
Trees, bagging and random forest (RF) 50
Boosting (Adaboost, Gradient Boosting) 54

Conclusion 56

50/67

Ensemble methods

Principle of ensemble methods

▶ Generalization of a unique predictor is hard to estimate.

▶ Strength in number (and different opinions).

▶ Estimate a number of predictors fk (with some variability).

▶ Use the predictions of those predictors to reach a consensus that is more robust.

▶ Theoretical result show that merging prediction from ”weak” classifiers can
minimize the variance and better generalize.

▶ Ensemble methods are meta-estimators : they can use existing ”black box”
estimators.

Two main approaches

▶ Averaging methods Several predictors fk are build independently and they are
averaged for a prediction (Bagging, Random Forests).

▶ Boosting Several predictors fk are build sequentially to reduce the bias/error of
their combination (Adaboost, Gradient Boosting)

51/67

Bagging

KNN with K=1 Bagging 1NN with nest=10 Bagging 1NN with nest=100 Bagging 1NN with nest=1000

Principle [Breiman, 1996]

▶ Select a supervised estimation method (any supervised predictor).

▶ Train several predictors on random selection of the train data.

▶ Sampling subset of samples with replacement is also called Bootstraping.

▶ Predict using majority voting (classification) or average value (regression).
▶ Several variants where predictors are trained on random subsets :

▶ of the features Random subspaces [Ho, 1998].
▶ of features and samples Random Patches [Louppe and Geurts, 2012].

▶ General implementations can select proportion of selected samples and features.

▶ Scikit-learn : sklearn.ensemble.BaggingClassifier / BaggingRegressor

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html

52/67

Decision Tree

Decision Tree depth=2 Decision Tree depth=3 Decision Tree depth=4 Decision Tree depth=5

Principle [Breiman et al., 2017]

▶ Predictor modeled as a binary tree where each node is a decision based on a
threshold of the value of one of the features.

▶ Standard algorithms are ID3 [Quinlan, 1986] and C4.5 [Quinlan, 1993] and CART
that use information entropy to select the variable that will be used on each node.

▶ Complexity of the tree depends on the depth of the tree.

▶ Model is very interpretable and explainable : you can express all the reasons for a
given decision.

▶ Rarely used alone in high dimension due to low generalization ability.

▶ Scikit-learn : sklearn.tree.DecisionTreeClassifier / DecisionTreeRegressor

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html

53/67

Random Forests (RF)

Random Forest nest=5 Random Forest nest=10 Random Forest nest=100 ExtraTrees nest=100

Principle [Ho, 1995, Breiman, 2001]

▶ Perform Bagging using Decision Trees as weak classifiers.

▶ Select only from a random subset of features on each node (similar to random
subspaces but on each node).

▶ Loose some interpretability of the trees but gain generalization performance.

▶ Similar adaptive neighborhood with RF and KNN [Lin and Jeon, 2006].

▶ Extremely randomized trees (ExtraTrees) use random thresholds in the trees
instead of optimal thresholds as in Decision Trees [Geurts et al., 2006].

▶ Scikit-learn : sklearn.tree.RandomForestClassifier / RandomForestRegressor

sklearn.ensemble.ExtraTreesClassifier / ExtraTreesRegressor

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html

54/67

Adaboost
AdaBoost nest=1 AdaBoost nest=5 AdaBoost nest=10 AdaBoost nest=100

Principle [Freund and Schapire, 1997]

▶ The predictor is a weighted sum Fk(x) =
∑

k αkfk.

▶ Estimated predictors fk trained sequentially on weighted training samples.

▶ At each step k a new predictor is estimated by minimizing :

fk, αk = argmin
f,α

n∑
i=1

e−yi(Fk−1(x)+αf(x)) =
n∑

i=1

wk
i e

−yiαf(x) (35)

For binary classification with f(x) ∈ {−1, 1}.
▶ The weights are updated at each iteration to favor samples miss-predicted by the

previous predictors.

▶ Scikit-learn : sklearn.ensemble.AdaBoostClassifier / AdaBoostRegressor

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html

55/67

Gradient Boosting (GB)
Gradient Boosting nest=5 Gradient Boosting nest=10 Gradient Boosting nest=50 Gradient Boosting nest=100

Principle [Friedman, 2001]

▶ Generalization of AdaBoost to any differentiable loss L.

▶ Estimate a predictor Fk(x) =
∑

k fk by minimizing iteratively the ERM:

fk = argmin
f

n∑
i=1

L(yi, Fk−1(x) + f(x)) (36)

▶ This is approximated by a gradient descent in the functional space with

Fk(x) = Fk−1(x)− γm

n∑
i=1

∇fL(yi, Fk−1(x) + f(x)) (37)

▶ Stochastic Gradient Boosting use random subsets of samples [Friedman, 2002].

▶ XGBoost, GB variant, won numerous competitions [Chen and Guestrin, 2016].

▶ Sklearn : sklearn.ensemble.GradientBoostingClassifier / GradientBoostingRegressor

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html

55/67

Section

Introduction 2
Supervised data 4
Supervised ML problems and Scikit-learn estimator 6

Bayesian decision and nearest neighbors 11
Predicting from probability distributions 11
Bayesian decision (Naive, LDA, QDA) 13
Nearest neighbors classification and regression (KNN) 20

Empirical Risk Minimization for linear and nonlinear models 22
Empirical Risk Minimization for supervised learning 22
Linear models for regression and classification (LS, Logistic) 25
Regularized Linear models (Ridge, Lasso) 34
Nonlinear models (Kernel SVM, Neural Nets) 40

Ensemble methods 50
Trees, bagging and random forest (RF) 50
Boosting (Adaboost, Gradient Boosting) 54

Conclusion 56

56/67

Conclusion

Supervised learning

▶ Bayesian methods lead to probabilistic predictions but densities can be gard to
estimate in high dimension.

▶ Always try linear models first! They are harder to overfit but use regularization
with Ridge or Lasso especially in high dimension.

▶ For small datasets with nonlinear prediction functions use SVM with hand-crafted
kernels (large datasets can use kernel approximation).

▶ Neural Network can estimate complex functions on large datasets. The different
layers can benefit from the structure of the data (convolution on image or signal).

▶ Gradient Boosting (XGBoost) works in many cases when good features available.

57/67

References I

[Bach et al., 2004] Bach, F. R., Lanckriet, G. R., and Jordan, M. I. (2004).

Multiple kernel learning, conic duality, and the smo algorithm.

In Proceedings of the twenty-first international conference on Machine learning, page 6.

[Boser et al., 1992] Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992).

A training algorithm for optimal margin classifiers.

In Proceedings of the fifth annual workshop on Computational learning theory, pages 144–152.

[Bottou, 2010] Bottou, L. (2010).

Large-scale machine learning with stochastic gradient descent.

In Proceedings of COMPSTAT’2010, pages 177–186. Springer.

[Breiman, 1996] Breiman, L. (1996).

Bagging predictors.

Machine learning, 24(2):123–140.

[Breiman, 2001] Breiman, L. (2001).

Random forests.

Machine learning, 45(1):5–32.

[Breiman et al., 2017] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (2017).

Classification and regression trees.

Routledge.

58/67

References II

[Chapelle, 2007] Chapelle, O. (2007).

Training a support vector machine in the primal.

Neural computation, 19(5):1155–1178.

[Chen and Guestrin, 2016] Chen, T. and Guestrin, C. (2016).

Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining,
pages 785–794.

[Defazio et al., 2014] Defazio, A., Bach, F., and Lacoste-Julien, S. (2014).

Saga: A fast incremental gradient method with support for non-strongly convex composite objectives.

In Advances in neural information processing systems, pages 1646–1654.

[Drucker et al., 1997] Drucker, H., Burges, C. J., Kaufman, L., Smola, A., Vapnik, V., et al. (1997).

Support vector regression machines.

Advances in neural information processing systems, 9:155–161.

[Duchi et al., 2011] Duchi, J., Hazan, E., and Singer, Y. (2011).

Adaptive subgradient methods for online learning and stochastic optimization.

Journal of machine learning research, 12(Jul):2121–2159.

[Fisher, 1936] Fisher, R. A. (1936).

The use of multiple measurements in taxonomic problems.

Annals of eugenics, 7(2):179–188.

59/67

References III

[Fix and Hodges, 1989] Fix, E. and Hodges, J. L. (1989).

Discriminatory analysis. nonparametric discrimination: Consistency properties.

International Statistical Review/Revue Internationale de Statistique, 57(3):238–247.

[Freund and Schapire, 1997] Freund, Y. and Schapire, R. E. (1997).

A decision-theoretic generalization of on-line learning and an application to boosting.

Journal of computer and system sciences, 55(1):119–139.

[Friedman et al., 2001] Friedman, J., Hastie, T., Tibshirani, R., et al. (2001).

The elements of statistical learning, volume 1.

Springer series in statistics New York.

[Friedman, 2001] Friedman, J. H. (2001).

Greedy function approximation: a gradient boosting machine.

Annals of statistics, pages 1189–1232.

[Friedman, 2002] Friedman, J. H. (2002).

Stochastic gradient boosting.

Computational statistics & data analysis, 38(4):367–378.

[Geurts et al., 2006] Geurts, P., Ernst, D., and Wehenkel, L. (2006).

Extremely randomized trees.

Machine learning, 63(1):3–42.

60/67

References IV

[Glorot and Bengio, 2010] Glorot, X. and Bengio, Y. (2010).

Understanding the difficulty of training deep feedforward neural networks.

In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pages
249–256. JMLR Workshop and Conference Proceedings.

[Glorot et al., 2011] Glorot, X., Bordes, A., and Bengio, Y. (2011).

Deep sparse rectifier neural networks.

In Proceedings of the fourteenth international conference on artificial intelligence and statistics, pages
315–323. JMLR Workshop and Conference Proceedings.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016).

Deep learning.

MIT press.

[Guigue et al., 2005] Guigue, V., Rakotomamonjy, A., and Canu, S. (2005).

Kernel basis pursuit.

In European Conference on Machine Learning, pages 146–157. Springer.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015).

Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.

In Proceedings of the IEEE international conference on computer vision, pages 1026–1034.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016).

Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

61/67

References V

[Ho, 1995] Ho, T. K. (1995).

Random decision forests.

In Proceedings of 3rd international conference on document analysis and recognition, volume 1, pages
278–282. IEEE.

[Ho, 1998] Ho, T. K. (1998).

The random subspace method for constructing decision forests.

IEEE transactions on pattern analysis and machine intelligence, 20(8):832–844.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997).

Long short-term memory.

Neural computation, 9(8):1735–1780.

[Hornik et al., 1989] Hornik, K., Stinchcombe, M., and White, H. (1989).

Multilayer feedforward networks are universal approximators.

Neural networks, 2(5):359–366.

[Hsu and Lin, 2002] Hsu, C.-W. and Lin, C.-J. (2002).

A comparison of methods for multiclass support vector machines.

IEEE transactions on Neural Networks, 13(2):415–425.

[Johnson and Zhang, 2013] Johnson, R. and Zhang, T. (2013).

Accelerating stochastic gradient descent using predictive variance reduction.

In Advances in neural information processing systems, pages 315–323.

62/67

References VI

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014).

Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.

[Koh et al., 2007] Koh, K., Kim, S.-J., and Boyd, S. (2007).

An interior-point method for large-scale l1-regularized logistic regression.

Journal of Machine learning research, 8(Jul):1519–1555.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).

Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11):2278–2324.

[Lin and Jeon, 2006] Lin, Y. and Jeon, Y. (2006).

Random forests and adaptive nearest neighbors.

Journal of the American Statistical Association, 101(474):578–590.

[Long et al., 2015] Long, J., Shelhamer, E., and Darrell, T. (2015).

Fully convolutional networks for semantic segmentation.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3431–3440.

[Louppe and Geurts, 2012] Louppe, G. and Geurts, P. (2012).

Ensembles on random patches.

In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages
346–361. Springer.

63/67

References VII

[Massias et al., 2020] Massias, M., Vaiter, S., Gramfort, A., and Salmon, J. (2020).

Dual extrapolation for sparse glms.

Journal of Machine Learning Research, 21(234):1–33.

[Miyato et al., 2018] Miyato, T., Maeda, S.-i., Koyama, M., and Ishii, S. (2018).

Virtual adversarial training: a regularization method for supervised and semi-supervised learning.

IEEE transactions on pattern analysis and machine intelligence, 41(8):1979–1993.

[Murphy, 2012] Murphy, K. P. (2012).

Machine learning: a probabilistic perspective.

MIT press.

[Murphy et al., 2006] Murphy, K. P. et al. (2006).

Naive bayes classifiers.

University of British Columbia, 18(60):1–8.

[Nesterov, 1983] Nesterov, Y. (1983).

A method for unconstrained convex minimization problem with the rate of convergence o (1/kˆ 2).

In Doklady an ussr, volume 269, pages 543–547.

[Platt et al., 1999] Platt, J. et al. (1999).

Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods.

Advances in large margin classifiers, 10(3):61–74.

64/67

References VIII

[Quinlan, 1986] Quinlan, J. R. (1986).

Induction of decision trees.

Machine learning, 1(1):81–106.

[Quinlan, 1993] Quinlan, J. R. (1993).

C4.5: Programs for Machine Learning.

Morgan Kaufmann Publishers, San Mateo, CA.

[Rahimi et al., 2007] Rahimi, A., Recht, B., et al. (2007).

Random features for large-scale kernel machines.

In NIPS, volume 3, page 5. Citeseer.

[Rakotomamonjy et al., 2008] Rakotomamonjy, A., Bach, F., Canu, S., and Grandvalet, Y. (2008).

Simplemkl.

Journal of Machine Learning Research, 9:2491–2521.

[Rao, 1948] Rao, C. R. (1948).

The utilization of multiple measurements in problems of biological classification.

Journal of the Royal Statistical Society. Series B (Methodological), 10(2):159–203.

[Ronneberger et al., 2015] Ronneberger, O., Fischer, P., and Brox, T. (2015).

U-net: Convolutional networks for biomedical image segmentation.

In International Conference on Medical image computing and computer-assisted intervention, pages
234–241. Springer.

65/67

References IX

[Roux et al., 2012] Roux, N. L., Schmidt, M., and Bach, F. R. (2012).

A stochastic gradient method with an exponential convergence rate for finite training sets.

In Advances in neural information processing systems, pages 2663–2671.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).

Learning representations by back-propagating errors.

nature, 323(6088):533–536.

[Schölkopf et al., 2001] Schölkopf, B., Herbrich, R., and Smola, A. J. (2001).

A generalized representer theorem.

In International conference on computational learning theory, pages 416–426. Springer.

[Shorten and Khoshgoftaar, 2019] Shorten, C. and Khoshgoftaar, T. M. (2019).

A survey on image data augmentation for deep learning.

Journal of Big Data, 6(1):1–48.

[Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014).

Dropout: a simple way to prevent neural networks from overfitting.

The journal of machine learning research, 15(1):1929–1958.

[Steinwart, 2005] Steinwart, I. (2005).

Consistency of support vector machines and other regularized kernel classifiers.

IEEE transactions on information theory, 51(1):128–142.

66/67

References X

[Tharwat, 2016] Tharwat, A. (2016).

Linear vs. quadratic discriminant analysis classifier: a tutorial.

International Journal of Applied Pattern Recognition, 3(2):145–180.

[Tibshirani, 1996] Tibshirani, R. (1996).

Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society: Series B (Methodological), 58(1):267–288.

[Tieleman and Hinton, 2012] Tieleman, T. and Hinton, G. (2012).

Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude.

COURSERA: Neural networks for machine learning, 4(2):26–31.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., and Polosukhin, I. (2017).

Attention is all you need.

In Advances in neural information processing systems, pages 5998–6008.

[Weston and Watkins, 1998] Weston, J. and Watkins, C. (1998).

Multi-class support vector machines.

Technical report, Citeseer.

[Williams and Seeger, 2001] Williams, C. and Seeger, M. (2001).

Using the nyström method to speed up kernel machines.

In Proceedings of the 14th annual conference on neural information processing systems, number CONF,
pages 682–688.

67/67

References XI

[Yao et al., 2007] Yao, Y., Rosasco, L., and Caponnetto, A. (2007).

On early stopping in gradient descent learning.

Constructive Approximation, 26(2):289–315.

[Zhang, 2004] Zhang, H. (2004).

The optimality of naive bayes.

AA, 1(2):3.

[Zhao and Yu, 2006] Zhao, P. and Yu, B. (2006).

On model selection consistency of lasso.

The Journal of Machine Learning Research, 7:2541–2563.

	Introduction
	Supervised data
	Supervised ML problems and Scikit-learn estimator

	Bayesian decision and nearest neighbors
	Predicting from probability distributions
	Bayesian decision (Naive, LDA, QDA)
	Nearest neighbors classification and regression (KNN)

	Empirical Risk Minimization for linear and nonlinear models
	Empirical Risk Minimization for supervised learning
	Linear models for regression and classification (LS, Logistic)
	Regularized Linear models (Ridge, Lasso)
	Nonlinear models (Kernel SVM, Neural Nets)

	Ensemble methods
	Trees, bagging and random forest (RF)
	Boosting (Adaboost, Gradient Boosting)

	Conclusion

