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The objective of this practical session is to manipulate and understand the machine learning problems
and methods discussed in the course. The practical session will be done in Python 3 and it is strongly
recommended to have a working Anaconda environment. The different sections of the session should be
implemented in Jupyter notebooks and it is strongly recommended to take notes in the notebook during the
session.

The individual reports (with figures and discussions) for the session will be uploaded on moodle in
python notebook format. It is expected to have a working code (reproducible figures) and a short discussion
in markdown format for all the results obtained in the practical session. Note that ALL plotting and
visualization questions in the practical session require a critical discussion of the visualized result that
will be graded.

The end of the report must contain a personal discussion about the session (what was hard to understand
and implement, how you would do it next time, what was new, discussion of relation with the course, personal
discussion about how to use these tools in a professional setting, . . . ).

Importing libraries

In this practical session we will use Numpy/Scipy Python libraries for handling numerical data and Mat-
plotlib for plotting them.

import numpy as np
import pylab as pl
import scipy as sp

Note that a more standard import for matplotlib is import matplotlib.pyplot as plt. You can use
the name you want for the plotting module but if you choose plt you need to replace it in the function
names given in the following ( plt.plot instead of pl.plot). We will also need to have access to some
functions and classes in the Scikit-learn toolbox.

1 Dataset description

In this session you will use a subset of the dataset from the BCI (for Brain Computer Interface) competition
IV. A detailed description and the raw data is available on the competition website 1.

Dataset You will use the dataset 4 from the competition. The objective of this data is to predict the finger
flexion of a subject using only ElectroCorticoGram (ECoG) signals recorded simultaneously on the brain of
the subject. In this session you will use the data from subject 3 and predict the flexion of its thumb along
time.

Experimental protocol The three subjects from the dataset were epileptic patients with ECoG sensors in
place for medical reasons. The subjects were equipped with gloves measuring the flexion of each of their
fingers simultaneously with the ECoG signals. The subjects were asked to move their fingers with visual
cue. The signal is a 10 minutes recording at 1000Hz of 64 electrodes.

1 Competition website:http://www.bbci.de/competition/iv/
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Fig. 1: Dataset 4 from BCI competition IV. It contains measured ECoG signals and the corresponding finger
flexion on the subjects.

Data pre-processing The ECoG signal was filtered with a Savitsky-Golay band-passed filter that has been
shown to work well on similar applications. The signal is then sub-sampled in order to obtain a sampling of
Fe = 50Hz. The target signal (finger flexion) is also sub-sampled to achieve the same sampling. Finally we
only keep temporal samples where the finger is detected to be in movement.

The file ECoG.npz contains the following variables:

Xall Matrix of IRn×d containing n examples of d variables.

Yall Vector of IRn containing values to predict.

Fe Sampling frequency for the two signals.

Prediction performance evaluation The performance of a given model can be computed either using the
average squared error :

MSE = 1
n

n∑
i

(yi − ŷi)2 (1)

that should obviously be the smallest possible. It can be computd with a single line of python or with the
function sklearn.metrics.mean_squared_error.

Another measure of performance is the R2 coefficient of determination that can be computed with
sklearn.metrics.r2_score and is equal for linear model to the square of the correlation coefficient :

R = Cov(Y, Ŷ)√
Cov(Y,Y)Cov(Ŷ, Ŷ)

(2)

where Cov(., .) is the covariance between the two vectors. The correlation coefficient was used in the
competition for the final ranking of the candidates methods. Both are normalized performance measures
that will be equal to 1 for a perfect prediction of 0 for a random prediction.

2 Data visualization and pre-processing

• Load the dataset in memory and plot the EcoG signals and the finger movement on the same figure
(np.load,pl.plot,pl.subplot).

• Visualize the data as a scatter plot where the color of the samples is the value to predict y and their
position are variables 45 and 48 of Xall (pl.scatter with Yall controlling the color).

• Split the data in a training and a testing set with n = 1000 training samples and the remaining samples
as testing samples (x=Xall[:n,:] to select the n first lines in a matrix).
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3 Least Squares regression (LS)

• Create the training matrix X̃ as defined in the course by concatenating a columns of 1s to the training
samples (np.concatenate,np.ones).

• Estimate the LS parameters on the training data by solving the linear problem. Store those parameters
as a vector w and a bias b (np.dot,np.linalg.solve).

• Predict the finger flexion of the subject on the training and test sets. Plot the predictions along with
the true y (pl.plot). Is the prediction good on test data?

• Compute the performance as MSE and R2 on training and test data. Conclusions?

• Estimate a linear regression with sklearn.linear_model.LinearRegression and check that the es-
timated coefficients are the same as those estimated above (model.coef_,model.intercept_).

4 Ridge regression

• Estimate the ridge predictor on the training data with λ = 1 and compute the prediction performances
on training and test set (sklearn.linear_model.Ridge).

• Estimate the Ridge and, predict the labels and compute the performance for 100 values of the regu-
larization parameter λ from 10−3 to 105.. Plot the evolution of the MSE on training and testing data
as a function of λ. Also plot the evolution of the linear parameters as a function of λ (in the same
figure with subplot).

• Select the value of λ having the best performance on test data and estimate a Ridge model with this
λ (np.argmin).

• Predict the finger flexion of the subject on the training and test sets. Visualize with a scatter plot the
true values VS the predictions (pl.scatter).

• Plot the predictions along with the true y (pl.plot) as a function of time. Is the prediction good on
test data?

• Compute the performance as MSE and R2 on training and test data. Compare with LS estimator and
discuss.

• Interpret the classifiers w for both LS and Ridge estimator by plotting their values and their absolute
values (pl.stem). Do they show the same important variables (large magnitude)?

5 Variable selection with the Lasso

• Estimate the Lasso predictor on the training data with default value for the regularization parameter
(sklearn.linear_model.Lasso).

• Predict and compute the prediction performances on training and test set, look at the estimated linear
model. Notice anything?

• Estimate the Lasso and, predict the labels and compute the performance for 100 values of the regular-
ization parameter λ from 10−3 to 105. (np.logspace,for i,reg in enumerate(lst_reg):). Plot
the evolution of the MSE on training and testing data as a function of λ.

• Select the value of λ having the best performance on test data and estimate a Lasso model with this
λ (np.argmin).
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• Predict the finger flexion of the subject on the training and test sets. Plot the predictions along with
the true y (pl.plot) as a function of time.

• Interpret the classifiers w for the Lasso estimator by plotting their values and their absolute values
(pl.stem). What are the two most important variables?

• How many features were selected by the lasso. What would the reduction of the number of electrodes?

6 Nonlinear regression

For the non-linear regressors, sklearn.ensemble.RandomForestRegressor, sklearn.svm.SVR, sklearn.
neural_network.MLPClassifier do the following:

• Fit the model with the default parameters and compute its prediction performance. Is it better than
LS (that has no parameters), Ridge or Lasso estimators?

• Validate (by hand, or with a loop) some of the important parameters in order to maximize the per-
formance on test. Is the performance very dependent on the parameters?

• Plot the predictions along with the true y (pl.plot) as a function of time. Is the regression method
good and why?

7 Final comparison of the performances

• Collect the test performances for all methods investigated above in a table (in a dataframe and printing
it for instance). Which methods work the best in practice?

• What are the most interpretable models?

• Which model is best from a medical/practical perspective?

• Do we need non-linearity in this application?

• Is validation on the test data a good practice? What would you do if you need to provide a model to
a client for prediction in production?
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