
MAP555 - Signal processing- Practical Session 1
Digital Signal Processing

The objective of this practical session is to manipulate and understand the digital signal processing tools
discussed in the course. The practical session will be done in Python 3 and it is strongly recommended to
have a working Anaconda environnement. The different sections of the session should be implemented in
Jupyter notebooks and it is strongly recommended to take notes in the notebook during the session.

The individual report for the session will be uploaded on moodle in python notebook format. It is
expected to have a working code (reproducible figures) and a short discussion in markdown format for all
the results obtained in the practicals session. The end of the report must contain a personal discussion about
the session (what was hard to understand and implement, how you would do it newt time, what was new,
discussion of relation with the course, personal discussion about how to use theses tools in a professional
setting, . . .).

Importing libraries

In this section we will use Numpy/Scipy Python libraries for handling numerical data and Matplotlib for
plotting them. We will also need to have access to some function in the scipy.signal and scipy.io.
wavfile submodule that have to be imported also.

import numpy as np
import pylab as pl
import scipy as sp
import scipy.signal
import scipy.io.wavfile

1 Signal generation and sampling

In this section we will generate some digital signals and see the effect of the sampling in term of reconstruc-
tion. Finally we will see how to generate audio signals and save it in readable .wav format.

1.1 Signal generation
We will generate samples from the following continuous signal

x(t) = sin(2πf0t) + cos(2πf1t)

where f0 = 2Hz and f1 = 3f0.

1. Implement a python function def x(t): that returns the values of x(t) from a list of values in numpy
np.array format (np.sin,np.cos,np.pi).

2. Generate a finely sampled signal at sampling frequency fs0 = 1000Hz over N0 = 1024 samples:

• Generate an array t0 of N time samples t of values t = n
fs

(np.arange).
• Call the function x ot the time vector and store the resulting values x[n] in vector x0.

1

1 Signal generation and sampling 2

• Plot the signal with correct time axis in seconds (pl.figure,pl.plot,pl.title).

3. Generate a sampled signal xn at sampling frequency fs = 20 over N = fs samples (1 sec sampling).

4. Plot simultaneously x0 and xn. For xn, use the plot style ’-o’ in order to see the position of the samples.

1.2 Signal reconstruction
1. What is the necessary sampling frequency fs ensuring that the signal x(t) can be reconstructed.

2. Code a function def rec_sinc(xs,ts,fs,t): that reconstructs a signal at time t from samples xs,ts
at frequency fs (for,np.sinc check documentation for np.sinc).

3. Plot simultaneously x0, [language=Python]|xn| with style ’-o’ and the interpolation of xn on t0. What
happens on the border of the sampling window ?

4. Change the sampling frequency from fs = 20 to fs = 10. What happens to the reconstruction?

1.3 Audio signal generation
In this part of the Practical session we will work with audio sequences. In order to do that we will use
scipy.io.wavefile to load and save .wav files. one can also listen to audio directly in python using the
library sounddevice that can be installed with pip. Note that the generated signals will be only plotted
and listened to in this section but we will study their frequency components in the next section.

1. Generate 1 second of sine wave of magnitude 0.5 and of frequency f0 = 425 Hz sampled at fs = 8000Hz.
Save it as a wave file (sp.io.wavfile.write) and listen to it (or listen directly from python with
sounddevice.play). It is the dial tone of European phones.

2. One can generate musical notes from their MIDI number m where the frequency is expressed as

fm = 440 ∗ 2
m−69

12

One can see that there is 12 semi-tones in order to increase one octave. the MIDI note m = 69 is the
A4 in english notation (la in french) and is the pitch standard used to tune instruments for concerts.
The list of the notes and their corresponding name and frequencies is available online1 Code a function
def get_note(m,fs,l): that returns note m played for a length of l seconds at frequency fs.

3. Save the note m = 69 in file "A4.wav". Listen to several other the MIDI notes. What happens for
m = 117 (A8) when saved at sampling frequency fs = 8000Hz ?

4. Code a sequence of the concatenation of notes [70, 72, 68, 56, 63] (1 sec each, np.concatenate). Save
the sequence as file "seq.wav". Do you know where this sequence come from?

5. Saturation can occur when amplifiers reach their maximum amplitude. The effect of saturation can
be reproduced using a clipping in a sine. Compare the signal for note m = 69 at 440Hz for different
values of clipping (np.clip). Save the note when using clipping in a file "A4clip.wav". What will be
the effect of the saturation on the frequency content of the signal?

6. Generate the signal
x(t) = sin(2π(f0t+ c

2 t
2))

with f0 = 100Hz and c = 500 for 1 second at sampling frequency fs = 8000Hz. This signal is called
a chirp and corresponds to frequency modulation. Save the signal in file "chirp.wav"

1 https://www.inspiredacoustics.com/en/MIDI_note_numbers_and_center_frequencies

https://www.inspiredacoustics.com/en/MIDI_note_numbers_and_center_frequencies

2 Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT) 3

2 Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT)

In this section we will study the discrete Fourier transform and see how it can be used to interpret the
content of signals.

2.1 Basis functions and Discrete Fourier Transform Matrix
1. Compute the Fourier basis functions for all k for signal of size N = 32. Plot their real and imaginary

parts in a figure (np.exp,1j,np.pi,np.real,np.imag).

2. Compute the Discrete Fourier Transform (DFT) matrix for N = 32 and visualize it as an image
(pl.imshow).

3. For a signal of length N = 1024 such that x[n] = cos(2 ∗ πf0n) and f0 = k
N for k < N/2 positive

integer compute the FT matrix and apply it to the signal. Then visualize its magnitude in the frequency
domain.

4. Change f0 to a large value suck that k > N , what happens to the spectrum?

5. Change f0 ∈ R+ to a non integer value, what happens to the spectrum?

2.2 Fast Fourier Transform
1. Time a computation of the DFT with and without the Fourier Matrix pre-computation for N=1024

(time.clock()).

2. Time the computation of the FFT for the same signal (np.fft.fft) and compare it to the two other
timings.

3. Compute and store the computational time of DFT, DFT+matrix and FFT for N = 2k sampled
logarithmically from k = 2 to k = 12. Plot ina loglog plot the different computational times as a
function of N (pl.loglog). Discuss.

2.3 Interpreting signals
For all signals described below, do the following steps:

1. Load the signal in memory (sp.io.wavefile.read for .wav file of np.load for .npz file) and store
both the signal x and the sampling frequency fs.

2. Plot the signal in time with proper x axis (time in seconds).

3. Plot the magnitude of the signal FFT with corresponding real life frequency centered around 0 (np.
fft.fft,np.fft.fftfreq,np.fft.fftshift).

4. Interpret and discuss the properties of the signal in frequency using information provided in the signal
description below. Recover physical parameters such as time constant of fundamental frequencies of
the signals when possible. You can zoom on part of a plot using pl.xlim([xmin,xmax]).

Here is the list of signal and their corresponding filename Some have been saved in previous section of
the practical session and the others can be downloaded from moodle ()data_TP1.zip):

• A4.wav contains the MIDI note m = 69.

• A4clip.wav contains the MIDI note m = 69 with clipping corresponding to a saturation effect.

• seq.wav contains the sequence of note generated in section 1.3 .

3 Digital filtering 4

• chirp.wav contains a chirp frequency modulation signal. What are the instantaneous frequencies in
this signal? What is the support of its spectrum?

• uku.wav and uku2.wav contain one note badly played on a ukulele by your professor. What are the
notes played? What are their corresponding MIDI number.

• drum.wav is a recording of a drum playing containing both bass drum and cymbal corresponding to a
low frequency and high frequency signal.

• stairway.wav and stairwayb.wav contains 10 seconds of the start of a well known song where the
second file has been corrupted by noise. Zoom in on the low frequencies and find the mode. What is
the midi note corresponding to this mode that is the most played note in the sequence? What is the
frequency support of the noise?

• ecg.npz is the recording of an ElectroCardioGram. Can you see the average beats per minute in
the spectrum? Was the signal recorded in Europe or in the US? Where is the noise situated in the
frequency domain?

• conso.npz is the recording of of the usage in Watt of the Drahi-X Novation Center building with a
sampling period of 1 min for about 4 weeks. Recover the days and weeks in the shape of the temporal
signal. In the frequency domain, zoom in on the low frequencies in particular those corresponding to
1 day and 1 week periodicity.

3 Digital filtering

In this section we will study several digital filters and apply them on signals.

3.1 Ideal filtering
1. Load the signal in the file "stairwayb.wav". We want to attenuate the noise by cuting the whole

frequency band where noise is present.

2. Compute the FFT of the signal and plot its magnitude in the Fourier domain. Select a cutoff frequency
fc for an ideal low-pass filter.

3. Apply an ideal low ideal filter with a frequency cutoff fc (abs,<,np.fft.ifft,np.fft.ifftshift).
Listen to the filtered signal. Keep in mind that saving a wav file in float format clips the values between
-1 and 1 so the signal should be scaled properly in order to avoid saturation.

4. Use an ideal filter to select only the note with the lower frequency in signal "seq.wav". Listen to the
filtered signal to check that only on note remain.

5. Compute the inverse Fourier transform of the ideal low pass filter frequency response in order to get
its circular convolution impulse response. Do the same for the ideal high-pass filter. Check for both
that the the 0 frequency is respectively passed and cut by computing the static gain.

3.2 Digital filter design
In real life applications, one often need to design causal filters. This is done by estimating coefficients for an
FIR or IIR filter of finite order approximating continuous time systems such as Butterworth of Chebychev
filters.

1. Compute the coefficients of a discrete FIR Butterworth filter for a normalized cutoff frequency of
fc = 0.2 (for a sampling frequency of 1) of order n = 2 (sp.signal.butter).

3 Digital filtering 5

2. Implement a function def freq_resp(a,b,f) that returns the frequency response to an IIR filter a,b
for a list of frequencies f. Plot the frequency response for butterworth filter of orders n = 1, 2, 3, 4.

3. Apply the filter to the noisy signal "stairwayb.wav" (sp.signal.lfilter). What is the equivalent
cutoff frequency in Hz? At which order the filter is strong enough to attenuate well the noise?

4. Compute the coefficients of a discrete FIR Chebychev filter of type 1 for a normalized cutoff frequency
of fc = 0.2 (for a sampling frequency of 1) or order n = 2 and allowing ripples of 1dB in the bandpass
(sp.signal.cheby1). Plot the frequency response of both Buterworth an Chebychev filter of same
order on the same plot.

5. Apply the Chebychev filter to the noisy signal "stairwayb.wav". What happens for an order n = 50?
Does it happen for the Butterworth filter of the same order?

3.3 Source separation and denoising
1. Design filters (IIR of ideal) that allow a coars sseperation of the different sources in signals : "drum.wav",

"seq.wav".

2. Design filters for the signals "ecg.npz" and "conso.npz" so as to better see the important signal (respec-
tively heart beats and power usage).

	Signal generation and sampling
	Signal generation
	Signal reconstruction
	Audio signal generation

	Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT)
	Basis functions and Discrete Fourier Transform Matrix
	Fast Fourier Transform
	Interpreting signals

	Digital filtering
	Ideal filtering
	Digital filter design
	Source separation and denoising

