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Linear Prediction

Linear function
Function f : Rd → R, can be expressed as

f (x) =
d∑

i=1

wixi + b = x>w + b = [x>1]α (1)

with w ∈ Rd a vector defining an hyperplane in Rd et b ∈ R a bias term
dislacing the function along the normal w of the hyperplane. All parameters can

be stored in a unique vector α =

[
w
b

]
of dimensionality Rd+1 concatenating

w and b.

Objective of linear prediction

I Regression: f (·) ∈ R.

I Classification: sign(f (·)) ∈ {−1, 1}.
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Linear regression

Objective

Train a linear function f (·) that can predict a continuous value y ∈ R from an
observation x ∈ Rd .
In practice we want to find the coefficients (w, b) of f (·) using a training
dataset {xi , yi}i=1,...,n.
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Application for a Brain Computer Interface (BCI)

BCI Competition IV, Dataset 4

I Data: Recordings of ECoG brain signals and of simultaneous finger flexion
of a subject (using a glove).

I Objective of the competition: predict movement of the 5 fingers of the
subject from its recorded ECoG.

I Best performances wree obtained using a linear model.
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How do we store training data ?

X =




x>1 1
x>2 1
...

...
x>i 1
...

...
x>n 1




=




x11 x12 . . . x1j . . . x1d 1
x21 x22 . . . x2j . . . x2d 1

...
...

...
...

...
...

...
xi1 xi2 . . . xij . . . xid 1
...

...
...

...
...

...
...

xn1 xn2 . . . xnj . . . xnd 1




, y =




y1
y2
...
yi
...
yn




Training data

I xi ∈ Rd observations for i = 1, . . . , n.

I yi ∈ R values to predict for i = 1, . . . , n.

Matrix form:

I X ∈ Rn×(d+1) such that x = [x1, x2, . . . , xn, e]> with e ∈ Rd and ei = 1,∀i
I y ∈ Rn such that y = [y1, y2, . . . , yn]>.

I α ∈ Rd+1 is a vector such that α =

[
w
b

]

7/35

Performance measure

How to measure performance of a prediction?

Let y be the values to predict and ŷ the predictions.

Mean square error

MSE =
1

n

n∑

i=1

(yi − ŷi )
2

I 0 for a perfect prediction.

I Not normalized (depends on the
variance of y)

Correlation coefficient

r =
1
n

∑n
i=1(yi − ȳ)(ŷi − ¯̂y)

σyσŷ

I ȳ = 1
n

∑
i yi mean of y and σy

its.

I 1 for perfect prediction.

I Normalized : r ∈ (−1, 1).

Warning

Always measure performance of a model on data that has NOT been used for
training or else there is a risk of over-fitting
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Error and squared error

Principle

We have the following model:

y = x>w + b = x̃>α (2)

where x̃ = [x1, ..., xd , 1]> is x concatenated with 1.
We seek for parameters (w, b) ≡ α of function f (·) that works well on training
data.

Residuals
The residual of sample i is the prediction error :

εi = yi − x>i w − b = yi − x̃>i α (3)

We want the residuals to be the smallest possible in average. To this end we
can measure the error as the square error:

ε2i = (yi − x>i w − b)2 = (yi − x̃>i α)2 (4)
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Least square optimization problem

We see the function f (·) minimizing the squared error on the training samples :

min
f

1

2

n∑

i=1

(yi − f (xi ))2 =
1

2

n∑

i=1

ε2i (5)

using the linear form of f (·), we obtain the following optimization problem :

min
w,b

1

2

n∑

i=1

(yi − x>i w − b)2 (6)

that is equivalent to

min
α

1

2

n∑

i=1

(yi − x̃>i α)2 (7)
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Interpretation of least squares

J(α) =
1

2

n∑

i=1

(
yi − x̃>

i α︸ ︷︷ ︸
εi

)2

The problem can be seen as finding
an hyperplane xTw + b = y in a
Rd+1 space that best fits a point
cloud (xi , yi ) i = 1, n with respect to
the y dimension.

Figure: Residuals for the regression
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Matrix form of least squares (1)

Resudial as a vector
The residuals (error) on the samples can be expressed as:

εi = yi − x>i w − b = yi − x̃>i α (8)

Similarly to the training data, they can be stored in a vector ε ∈ Rn such that:

ε = y − Xα (9)

Matrix form for lerast square

The leats square optimization proble cen be expressed as:

min
α

‖ε‖2 = ‖y − Xα‖2 (10)

where ‖ · ‖ is the euclidean norm of a vector such that ‖ε‖2 =
∑n

i=1 ε
2
i
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Matrix form of least squares (2)

The optimization problem can be expressed as:

min
α

J(α) avec J(α) =
1

2
||y − Xα||2

Using the properties of scalar product we get :

min
α

J(α) =
1

2
||y − Xα||2

=
1

2
(y − Xα)>(y − Xα)

∑

a

=
1

2
y>y − 1

2
α>X>y − 1

2
y>Xα +

1

2
α>X>Xα

∑

a

=
1

2
y>y −α>X>y +

1

2
α>X>Xα

y>y is a scalar, X>y is a vector Rd and X>X is a (d + 1)× (d + 1) matrix.
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Convex optimization basics

Optimization problem

We want to solve

min
α

J(α) avec J(α) =
1

2
||y − Xα||2

where J(α) is a convex function.

Minimum of a convex function
Let J(α) be a convex function Rd → R R. α? is a minimum J(α) if and only if

∇J(α?) = 0 (11)

where ∇J(α) ∈ Rd is the gradient of the function in α such that

∇J(α)i =
∂J(α)

∂αi
∀i

In order to find the minimum we need to find α? such that the gradient is 0.

Gradient computation

J(α) = 1
2y>y − α>X>y + 1

2α
>X>Xα

∂J(α)

∂αi
= 0 − pi + 1

2

d+1∑

j=1

(Mij + Mji )αj

with p = X>y and M = X>X

I ∂α>p

∂αi
=
∂
∑d+1

j=1 pjαj

∂αi
= pi

I ∂α>Mα

∂αi
=
∂
∑d+1

j=1

∑d+1
k=1 αjαkMjk

∂αi
=

d+1∑

j=1

αjMji +
d+1∑

k=1

αkMik

because (uv)′ = uv ′ + u′v with u = αj et v =
∑d+1

k=1 αkMjk

∇J(α) = −p + Mα = −X>y + X>Xα
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Least Squares solution

Minimizing the cost J(α) corresponds to finding the parameter α that lads to a
null gradient:

∇J(α̂) = 0 ⇔ −X>y + X>Xα̂ = 0

The solution of the minimization problem for Least Square is the vector α̂
defined as

α̂ =
(
X>X

)−1
X>y

Hypothesis

X is a matrix of rank d + 1 which means that X>X is invertible.
In practice it means that n > d + 1, this method requires that we have more
training samples than parameter to estimate.
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Geometrical interpretation

Ω = span{X}
Ω is the linear subspace of Rn

generated by the columns of matrix X.

z ∈ Ω ⇔ ∃ α ∈ Rd+1 z = Xα

The least square is the projection of y onto Ω. We have :

Xα̂ = Hy

with the orthogonal projection operator H = X
(
X>X

)−1
X>

16/35



Estimation and orthogonality

Objective value ‖ε‖2 is minimal for
α such that z = Xα is the
orthogonal projection of y on Ω.
This means that

∀z ∈ Ω z>ε = 0

Which means that the residual is
orthogonal to all columns of X

X>(y − Xα̂) = 0

X>(y − Xα̂) = 0 ⇔ X>y − X>Xα̂ = 0
⇔ X>Xα̂ = X>y
⇔ α̂ = (X>X)−1X>y
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Probablistic interpretation of least squares (1)

Observation model
We suppose that the observation model is the following:

y = x>w + b + ε = x̂>α + ε

I ε is a a centered random variable such that ε ∼ N (0, σ2
n).

I The probability of a given observation (x, y) when the parameters α are
know is then

p(x, y |α) =
1√

2πσ2
n

exp

(
− (y − x̂>α)2

2σ2
n

)

Likelihood on the dataset
The likelihood for the whole dataset can be expressed as

L(α) =
n∏

i=1

p(xi , yi |α) =

(
1√

2πσ2
n

)n n∏

i=1

exp

(
− (yi − x̂>i α)2

2σ2
n

)
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Probablistic interpretation of least squares (2)

Maximum likelihood estimator
The MLE estimator is the solution of

max
α

L(α)

In practice people often maximize the log-likelihood in order to have a simpler
problem with the same solution.

Maximizing the Log-likelihood

log (L(α)) = n log

(
1√

2πσ2
n

)
+

n∑

i=1

log

(
exp

(
− (yi − x̂>i α)2

2σ2
n

))

= n log

(
1√

2πσ2
n

)
− 1

2σ2
n

n∑

i=1

(yi − x̂>i α)2 = cst − J(α)

Maximizing the log-likelihood wrt α is equivalent to minimizing J(α).
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Why regularize ?

Least Squares

We minimize the prediction error on the training data:

min
α

J(α) avec J(α) =
1

2
||y − Xα||2

Problem solution is
α̂ =

(
X>X

)−1
X>y

Numerical problems

I When n < d + 1, matrix X>X is non-invertible.

I There exists an infinity of solutions, problem is ill-posed.

⇒ regularization (among all possible solutions, pick the simplest).
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Ridge Regression

Optimization problem

min
w,b

1

2

n∑

i=1

(yi − x>i w − b)2 +
λ

2
‖w‖2 (12)

I We add a regularization term ‖w‖2 weighted by the regularization
coefficient λ ≥ 0.

I Parameter λ can be chosen to limit over-fitting on the data.

I This regularization promotes parameters w of minimal norm.

I It make the optimization problem strictly convex (a unique solution).

I When λ = 0 problem boils down to the least squares (special case).
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Matrix form of ridge regression

min
α

{
J ′(α) =

1

2
||y − Xα||2 +

λ

2
α>Sα

}
(13)

with S ∈ R(d+1)×(d+1) a matrix defined as

S =




1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 0




Si,j =

{
1 si i = j et i≤d
0 sinon

(14)

S is a diagonal matrix containing 1 on the diagonal except for the last term
equal to 0 . Problem (12) and (13) are equivalent because

α>Sα =
d+1∑

i,j=1

αiαjSi,j =
d∑

i=1

α2
i =

d∑

i=1

w2
i = ‖w‖2 (15)
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Gradient computation

J ′(α) = 1
2y>y − α>X>y +

1
2α

>(X>X+λS)α
︷ ︸︸ ︷
1

2
α>X>Xα +

λ

2
α>Sα

∂J ′(α)

∂αi
= 0 − pi + 1

2

d+1∑

j=1

(Mij + Mji )αj

with p = X>y and M = X>X + λS

I ∂α>p

∂αi
=
∂
∑d+1

j=1 pjαj

∂αi
= pi

I ∂α>Mα

∂αi
=
∂
∑d+1

j=1

∑d+1
k=1 αjαkMjk

∂αi
=

d+1∑

j=1

αjMji +
d+1∑

k=1

αkMik

because (uv)′ = uv ′ + u′v with u = αj and v =
∑d+1

k=1 αkMjk

∇J ′(α̂) = −p + Mα = −X>y + (X>X + λS)α̂

Ridge regression solution

Minimizing the cost J ′(α) corresponds to finding the parameter α that lads to
a null gradient:

∇J ′(α̂) = 0⇔ −X>y + (X>X + λS)α̂ = 0

The solution of the minimization problem for ridge regression is the vector α̂
defined as :

α̂ =
(
X>X + λS

)−1
X>y

Regularization

Matrix S adds λ on the diagonal of X>X, making the matrix X>X + λS
invertible. The roblem is now well posed and has a unique solution.
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Probabilistic interpretation of Ridge Regression

Prior distribution for the parameters

I In LS we had no prior information about α.

I We suppose that the w parameter has been drawn from w ∼ N (0, σ2
pI).

I Probability of a given w is : p(w) =
∏n

i=1
1√
2πσ2

p

exp
(
− (wk )

2

2σ2
p

)

Maximum likelihood estimator

log (L(α)) = cst − 1

2σ2
n

n∑

i=1

(yi − x̂>i α)2 − 1

2σ2
p

d∑

k=1

(wk)2

= cst − 1

2σ2
n

n∑

i=1

(yi − x̂>i α)2 − 1

2σ2
p

‖w‖2

I Maximizing the log-likelihood wrt α is equivalent to minimizing J(α).

I Problems are equivalent when λ =
σ2
n

σ2
p
.
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Lasso estimator

min
w,b

1

2

n∑

i=1

(yi − x>i w − b)2 + λ

d∑

k=1

|wk | (16)

Optimization problem

I ‖w‖1 =
∑d

k=1 |wk | is the L1 norm of vector w.

I Objective function is non differentiable in wk = 0,∀k.

I For a large enough λ the solution of the problem is sparse (some
components of w are exactly 0).

I The problem is equivalent to

min
w,b,‖w‖1≤µ

1

2

n∑

i=1

(yi − x>i w − b)2 (17)

I.e. there exists a µ that leads to the same solution of the problem for a
given λ.

27/35

Lasso with no bias

Data and model

I If the model has no bias b it means that the prediction can be expressed as

f (x) =
∑

i

xiwi = x>w

I X′ ∈ Rn×d is the X matrix without the last columns containing ones.

I Prediction can be done with done with X′w and w is teh only parameters

Matrix form of the optimization problem

min
w

1

2
‖y − X′w‖2 + λ‖w‖1 (18)

I In the remaining we will focus on the Lasso with no bias for readability.

I Extension of the result when adding the bias is tedious but straightforward.
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Subgradients and subdifferential
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Non differentiable function

I A non differentiable function might not have a gradient (ex | · | in 0).

I The tool used in place of gradient is the subdifferential and subgradients.

I For a convex function f (x), g is a subgradient of f in x0 if

f (x) ≥ f (x0) + g>(x− x0) (19)

I The set of all subgradients at x0 is the subdifferential ∂f (x0).

I x0 is a minimum of the convex function f if 0 ∈ ∂f (x0).
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Subdifferential for the L1 norm

‖w‖1 =
d∑

k=1

|wk |

L1 norm

I The subdifferential is of the form

∂‖w‖1 =

{
g : ‖g‖∞ ≤ 1 si w = 0
g : ‖g‖∞ ≤ 1 et gTw = ‖w‖1 si w 6= 0

I Which give

∂‖w‖1 =

{
g : gk ∈ [−1, 1] si w = 0
g : gk = sign(wk) si w 6= 0
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Optimality conditions of the Lasso

Optimality conditions

w? is a solution of the optimization problem if

0 ∈ ∂Jlasso(w?) with Jlasso(w) =
1

2
‖y − X′w‖2 + λ‖w‖1

This can be reformulated as the following condition

−X′>(y − X′w?) + λg = 0 with g ∈ ∂‖w?‖1

Conditions on the components of w?

w?
k 6= 0 ⇒ −X′Tk (y − X′w?) + λsign(w?

k ) = 0
w?
k = 0 ⇒ |X′Tk (y − X′w?)| ≤ λ

I X′k is the kth column of X′ (feature k).

I The is no closed-form solution except for special cases of X′

(orthogonality).
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Interpreting optimality conditions

Correlation with the residue

ck = X′Tk (y − X′w?) = ‖X·,k‖‖y − Xw?‖ cos(θ)

I ck is the scalar product between the feature k and the residuals
ε = y − Xw?.

I θ is the angle between the two vectors.

I ck = 0, ∀k for Least Squares regression (optimality condition).

Effect of the regularization parameter λ

I λ = 0 boils down to Least Squares (no sparsity).

I If λ is small we have wk = 0 only for variable k where

|X′Tk (y − X′w?)| ≤ λ

I If λ is very large at some point we have for all k,

|X′Tk y| ≤ λ which means wk = 0, ∀k.
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L2 VS L1 regularization

Regularization constraint
Squared error
Problem solution

Regularization constraint
Squared error
Problem solution

Tikhonov regularization

min
w

1

2
‖y − X′w‖2 + λΩ(w)

⇔

Ivanov regularization

min
w

1

2
‖y − X′w‖2

s.t. Ω(w) ≤ µ

The two optimization problems are equivalent for a strictly convex function Ω.
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Solving the optimization problem

Least-angle regression (LARS)

I Algorithm developed by B. Efron, T. Hastie, I. Johnstone and R. Tibshirani.

I Allows to find efficiently the whole regularization path (all solution for all λ)

I Potiential problems with highly correlated variables.

Proximal gradient descent (PGD)

I Subgradientd ecsent is known to converge slowly.

I Proximal gradient descent allows for acceleration of the resolution.

I Can be seen a a Majoration-Minimization method.

I Each iteration is a simple soft thresholding of the parameter.

I Can be coupled for active sets to speedup sparse solutions.

Coordinate descent algorithm

I Optimize each components of w independently until conergence.

I Very fast for sparse solutions.
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Coordinate descent for the Lasso

Algorithm

I Select an initial vector w (usually w = 0).

I For all k : wk ← minwk
Jlasso(w) with all wj , j 6= k fixed

I Repeat until optimality conditions are statisfied.

Iteration for wk

minwk

1
2‖y − X′w‖22 + λ‖w‖1

minwk

1
2‖y −

∑
j 6=k X′iwi − X′kwk‖22 + λ|wk |

minwk

1
2‖s− X′kwk‖22 + λ|wk |

were s = y −∑j 6=k X′iwi is the residual wrt wk . The last problem is a Lasso
with only one variable, its solution is

w?
k = sign(X′Tk s)(|X′Tk s| − λ)+

This operator is called the soft thresholding.
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Regularized linear regression

General problem formulation:

min
w,b

n∑

i=1

L(yi ,w
>xi + b) + λΩ(w) (20)

With

I L(· · · ) a loss function.

I Ω(·) a regularization term.

Examples:

Loss function L(y , ŷ)

I (y − ŷ)2, quadratic (this course).

I |y − ŷ |, absolute value.

I min(0, |y − ŷ | − ε) epsilon
insensitive

Regularizations Ω(w)

I ‖w‖22, quadratic.

I ‖w‖1, `1 norm.

I w>Σw, Mahalanobis.


