	Introduction Linear function Training dataset Performance measures
Linear regression	Least Square regression (LS) Optimization problem Geometrical interpretation
R. Flamary, A. Rakotomamonjy	Probabilistic interpretation
January 10, 2019	Ridge regression Tikhonov regularization Optimization problem Probabilistic interpretation
	Variable selection with the Lasso Optimization problem Non smooth minimization

Sommaire

Regularized least Square (RLS) General problem formulation

2/35

Linear Prediction

Linear function

Function $f : \mathbb{R}^d \to \mathbb{R}$, can be expressed as

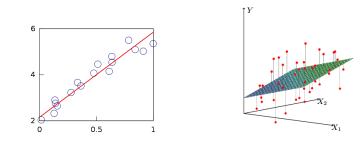
$$f(\mathbf{x}) = \sum_{i=1}^{d} w_i x_i + b = \mathbf{x}^\top \mathbf{w} + b = [\mathbf{x}^\top \mathbf{1}]\alpha$$
(1)

with $\mathbf{w} \in \mathbb{R}^d$ a vector defining an hyperplane in \mathbb{R}^d et $b \in \mathbb{R}$ a bias term dislacing the function along the normal \mathbf{w} of the hyperplane. All parameters can be stored in a unique vector $\boldsymbol{\alpha} = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$ of dimensionality \mathbb{R}^{d+1} concatenating \mathbf{w} and b.

Objective of linear prediction

- ▶ Regression: $f(\cdot) \in \mathbb{R}$.
- ▶ Classification: $sign(f(\cdot)) \in \{-1, 1\}$.

Linear regression

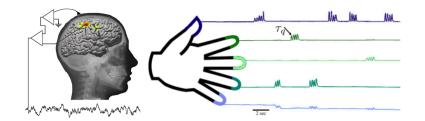


Objective

Train a linear function $f(\cdot)$ that can predict a continuous value $y \in \mathbb{R}$ from an observation $\mathbf{x} \in \mathbb{R}^d$.

In practice we want to find the coefficients (\mathbf{w}, b) of $f(\cdot)$ using a training dataset $\{\mathbf{x}_i, y_i\}_{i=1,...,n}$.

Application for a Brain Computer Interface (BCI)



BCI Competition IV, Dataset 4

- Data: Recordings of ECoG brain signals and of simultaneous finger flexion of a subject (using a glove).
- Objective of the competition: predict movement of the 5 fingers of the subject from its recorded ECoG.
- Best performances wree obtained using a linear model.

How do we store training data ?

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_{1}^{\top} & 1 \\ \mathbf{x}_{2}^{\top} & 1 \\ \vdots & \vdots \\ \mathbf{x}_{i}^{\top} & 1 \\ \vdots & \vdots \\ \mathbf{x}_{n}^{\top} & 1 \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1j} & \dots & x_{1d} & 1 \\ x_{21} & x_{22} & \dots & x_{2j} & \dots & x_{2d} & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{i1} & x_{i2} & \dots & x_{ij} & \dots & x_{id} & 1 \\ \vdots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nj} & \dots & x_{nd} & 1 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{i} \\ \vdots \\ y_{n} \\ \vdots \\ y_{n} \end{bmatrix}$$

Training data

- ▶ $\mathbf{x}_i \in \mathbb{R}^d$ observations for i = 1, ..., n.
- ▶ $y_i \in \mathbb{R}$ values to predict for i = 1, ..., n.

Matrix form:

▶ $\mathbf{X} \in \mathbb{R}^{n \times (d+1)}$ such that $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n, \mathbf{e}]^\top$ with $\mathbf{e} \in \mathbb{R}^d$ and $e_i = 1, \forall i$

•
$$\mathbf{y} \in \mathbb{R}^n$$
 such that $\mathbf{y} = [y_1, y_2, \dots, y_n]^\top$.

• $\pmb{lpha} \in \mathbb{R}^{d+1}$ is a vector such that $\pmb{lpha} = \left[egin{array}{c} \pmb{\mathsf{w}} \\ \pmb{b} \end{array}
ight]$

6/35

8/35

Performance measure

How to measure performance of a prediction?

Let \boldsymbol{y} be the values to predict and $\hat{\boldsymbol{y}}$ the predictions.

Mean square error

Correlation coefficient

$$MSE = \frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$$

- ▶ 0 for a perfect prediction.
- Not normalized (depends on the variance of y)

$$\sigma_y \sigma_{\hat{y}}$$

 $r = \frac{\frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y}) (\hat{y}_i - \bar{\hat{y}})}{1 - \hat{y}}$

- $\bar{y} = \frac{1}{n} \sum_{i} y_i$ mean of **y** and σ_y its.
- 1 for perfect prediction.
- ▶ Normalized : $r \in (-1, 1)$.

Warning

Always measure performance of a model on data that has NOT been used for training or else there is a risk of ${\bf over-fitting}$

Error and squared error

Principle

We have the following model:

$$y = \mathbf{x}^{\top} \mathbf{w} + b = \tilde{\mathbf{x}}^{\top} \alpha \tag{2}$$

where $\tilde{\mathbf{x}} = [x_1, ..., x_d, 1]^\top$ is \mathbf{x} concatenated with 1. We seek for parameters $(\mathbf{w}, b) \equiv \alpha$ of function $f(\cdot)$ that works well on training data.

Residuals

The residual of sample i is the prediction error :

$$\epsilon_i = y_i - \mathbf{x}_i^\top \mathbf{w} - b = y_i - \tilde{\mathbf{x}}_i^\top \alpha$$
(3)

We want the residuals to be the smallest possible in average. To this end we can measure the error as the square error:

$$\epsilon_i^2 = (y_i - \mathbf{x}_i^\top \mathbf{w} - b)^2 = (y_i - \tilde{\mathbf{x}}_i^\top \alpha)^2$$
(4)

Least square optimization problem

Interpretation of least squares

We see the function $f(\cdot)$ minimizing the squared error on the training samples :

$$\min_{f} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2 = \frac{1}{2} \sum_{i=1}^{n} \epsilon_i^2$$
(5)

using the linear form of $f(\cdot)$, we obtain the following optimization problem :

$$\min_{\mathbf{w},b} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^\top \mathbf{w} - b)^2 \tag{6}$$

that is equivalent to

$$\min_{\boldsymbol{\alpha}} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \tilde{\mathbf{x}}_i^{\top} \boldsymbol{\alpha})^2 \tag{7}$$

$$J(\boldsymbol{\alpha}) = \frac{1}{2} \sum_{i=1}^{n} (\underbrace{y_i - \tilde{\mathbf{x}}_i^{\top} \boldsymbol{\alpha}}_{\varepsilon_i})^2$$

The problem can be seen as finding an hyperplane $\mathbf{x}^T \mathbf{w} + b = y$ in a \mathbb{R}^{d+1} space that best fits a point cloud $(\mathbf{x}_i, y_i) i = 1, n$ with respect to the y dimension.

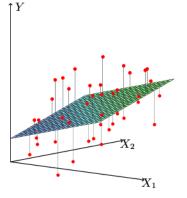


Figure: Residuals for the regression

9/35

Matrix form of least squares (1)

Resudial as a vector

The residuals (error) on the samples can be expressed as:

$$\epsilon_i = y_i - \mathbf{x}_i^\top \mathbf{w} - b = y_i - \tilde{\mathbf{x}}_i^\top \alpha$$
(8)

Similarly to the training data, they can be stored in a vector $\boldsymbol{\epsilon} \in \mathbb{R}^n$ such that:

$$\boldsymbol{\epsilon} = \mathbf{y} - \mathbf{X}\boldsymbol{\alpha} \tag{9}$$

Matrix form for lerast square

The leats square optimization proble cen be expressed as:

$$\min_{\alpha} \quad \|\boldsymbol{\epsilon}\|^2 = \|\mathbf{y} - \mathbf{X}\boldsymbol{\alpha}\|^2 \tag{10}$$

where $\|\cdot\|$ is the euclidean norm of a vector such that $\|\epsilon\|^2 = \sum_{i=1}^n \epsilon_i^2$

Matrix form of least squares (2)

The optimization problem can be expressed as:

$$\min_{\alpha} \quad J(\alpha) \qquad \text{avec} \quad J(\alpha) = \frac{1}{2} ||\mathbf{y} - \mathbf{X}\alpha||^2$$

Using the properties of scalar product we get :

$$\begin{split} \min_{\alpha} \quad J(\alpha) &= \frac{1}{2} ||\mathbf{y} - \mathbf{X}\alpha||^2 \\ &= \frac{1}{2} (\mathbf{y} - \mathbf{X}\alpha)^\top (\mathbf{y} - \mathbf{X}\alpha) \\ &= \frac{1}{2} \mathbf{y}^\top \mathbf{y} - \frac{1}{2} \alpha^\top \mathbf{X}^\top \mathbf{y} - \frac{1}{2} \mathbf{y}^\top \mathbf{X}\alpha + \frac{1}{2} \alpha^\top \mathbf{X}^\top \mathbf{X}\alpha \\ &= \frac{1}{2} \mathbf{y}^\top \mathbf{y} - \alpha^\top \mathbf{X}^\top \mathbf{y} + \frac{1}{2} \alpha^\top \mathbf{X}^\top \mathbf{X}\alpha \end{split}$$

 $\mathbf{y}^{\top}\mathbf{y}$ is a scalar, $\mathbf{X}^{\top}\mathbf{y}$ is a vector \mathbb{R}^d and $\mathbf{X}^{\top}\mathbf{X}$ is a $(d+1) \times (d+1)$ matrix.

Convex optimization basics

Optimization problem

We want to solve

$$\min_{lpha} \quad J(lpha) \qquad ext{avec} \quad J(lpha) = rac{1}{2} ||\mathbf{y} - \mathbf{X} lpha ||^2$$

where $J(\alpha)$ is a convex function.

Minimum of a convex function

Let $J(\alpha)$ be a convex function $\mathbb{R}^d \to \mathbb{R} \mathbb{R}$. α^\star is a minimum $J(\alpha)$ if and only if

$$\nabla J(\boldsymbol{\alpha}^{\star}) = \mathbf{0} \tag{11}$$

where $abla J(oldsymbollpha) \in \mathbb{R}^d$ is the gradient of the function in oldsymbollpha such that

$$\nabla J(\boldsymbol{\alpha})_i = \frac{\partial J(\boldsymbol{\alpha})}{\partial \alpha_i} \quad \forall i$$

In order to find the minimum we need to find α^{\star} such that the gradient is **0**.

Least Squares solution

Minimizing the cost $J(\alpha)$ corresponds to finding the parameter α that lads to a null gradient:

$$abla J(\widehat{lpha}) = \mathbf{0} \quad \Leftrightarrow \quad -\mathbf{X}^{ op}\mathbf{y} \, + \, \mathbf{X}^{ op}\mathbf{X}\widehat{lpha} = \mathbf{0}$$

The solution of the minimization problem for Least Square is the vector $\widehat{\alpha}$ defined as

$$\widehat{oldsymbol{lpha}} = \left(oldsymbol{\mathsf{X}}^{ op} oldsymbol{\mathsf{X}}^{ op} oldsymbol{\mathsf{X}}^{ op} oldsymbol{\mathsf{Y}}
ight)^{-1} oldsymbol{\mathsf{X}}^{ op} oldsymbol{\mathsf{Y}}$$

Hypothesis

X is a matrix of rank d + 1 which means that $\mathbf{X}^{\top}\mathbf{X}$ is invertible. In practice it means that n > d + 1, this method requires that we have more training samples than parameter to estimate.

Gradient computation

$$J(\boldsymbol{\alpha}) = \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} - \boldsymbol{\alpha}^{\top} \mathbf{X}^{\top} \mathbf{y} + \frac{1}{2} \boldsymbol{\alpha}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\alpha}$$

$$\frac{\partial J(\boldsymbol{\alpha})}{\partial \alpha_{i}} = 0 - p_{i} + \frac{1}{2} \sum_{j=1}^{d+1} (M_{ij} + M_{ji}) \alpha_{j}$$

with
$$\mathbf{p} = \mathbf{X}^{\top} \mathbf{y}$$
 and $\mathbf{M} = \mathbf{X}^{\top} \mathbf{X}$

$$\begin{aligned} & \bullet \quad \frac{\partial \boldsymbol{\alpha}^{\top} \mathbf{p}}{\partial \alpha_{i}} = \frac{\partial \sum_{j=1}^{d+1} p_{j} \alpha_{j}}{\partial \alpha_{i}} = p_{i} \\ & \bullet \quad \frac{\partial \boldsymbol{\alpha}^{\top} \mathbf{M} \boldsymbol{\alpha}}{\partial \alpha_{i}} = \frac{\partial \sum_{j=1}^{d+1} \sum_{k=1}^{d+1} \alpha_{j} \alpha_{k} M_{jk}}{\partial \alpha_{i}} = \sum_{j=1}^{d+1} \alpha_{j} M_{ji} + \sum_{k=1}^{d+1} \alpha_{k} M_{ik} \end{aligned}$$

because (uv)' = uv' + u'v with $u = \alpha_j$ et $v = \sum_{k=1}^{d+1} \alpha_k M_{jk}$

$$abla J(\alpha) = -\mathbf{p} + \mathbf{M}\alpha = -\mathbf{X}^{\top}\mathbf{y} + \mathbf{X}^{\top}\mathbf{X}\alpha$$

14/35

Geometrical interpretation

 $\Omega = \text{span}\{\textbf{X}\}$

 Ω is the linear subspace of \mathbb{R}^n generated by the columns of matrix **X**.

 $\mathbf{z} \in \Omega \quad \Leftrightarrow \quad \exists \ \boldsymbol{lpha} \in \mathbb{R}^{d+1} \quad \mathbf{z} = \mathbf{X} \boldsymbol{lpha}$



The least square is the projection of \boldsymbol{y} onto $\boldsymbol{\Omega}.$ We have :

 $\mathbf{X}\widehat{\mathbf{lpha}}=\mathbf{H}\mathbf{y}$

with the orthogonal projection operator $\bm{\mathsf{H}}=\bm{\mathsf{X}}\left(\bm{\mathsf{X}}^{\top}\bm{\mathsf{X}}\right)^{-1}\bm{\mathsf{X}}^{\top}$

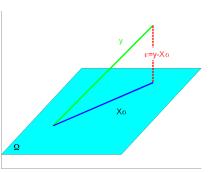
Estimation and orthogonality

Objective value $\|\boldsymbol{\epsilon}\|^2$ is minimal for α such that $\mathbf{z} = \mathbf{X}\alpha$ is the orthogonal projection of \mathbf{y} on Ω . This means that

$$\forall \mathbf{z} \in \Omega \quad \mathbf{z}^{\top} \boldsymbol{\epsilon} = \mathbf{0}$$

Which means that the residual is orthogonal to all columns of ${\bf X}$

$$\mathbf{X}^{ op}(\mathbf{y} - \mathbf{X}\widehat{lpha}) = 0$$



$$\begin{aligned} \mathbf{X}^{\top}(\mathbf{y} - \mathbf{X}\widehat{\alpha}) &= 0 & \Leftrightarrow & \mathbf{X}^{\top}\mathbf{y} - \mathbf{X}^{\top}\mathbf{X}\widehat{\alpha} = 0 \\ & \Leftrightarrow & \mathbf{X}^{\top}\mathbf{X}\widehat{\alpha} = \mathbf{X}^{\top}\mathbf{y} \\ & \Leftrightarrow & \widehat{\alpha} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} \end{aligned}$$

Probablistic interpretation of least squares (1)

Observation model

We suppose that the observation model is the following:

$$y = \mathbf{x}^{\top} \mathbf{w} + b + \epsilon = \hat{\mathbf{x}}^{\top} \boldsymbol{\alpha} + \epsilon$$

- ϵ is a centered random variable such that $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$.
- The probability of a given observation (x, y) when the parameters α are know is then

$$p(\mathbf{x}, y | \boldsymbol{\alpha}) = \frac{1}{\sqrt{2\pi\sigma_n^2}} \exp\left(-\frac{(y - \hat{\mathbf{x}}^\top \boldsymbol{\alpha})^2}{2\sigma_n^2}\right)$$

Likelihood on the dataset The likelihood for the whole dataset can be expressed as

$$\mathcal{L}(\alpha) = \prod_{i=1}^{n} p(\mathbf{x}_{i}, y_{i} | \alpha) = \left(\frac{1}{\sqrt{2\pi\sigma_{n}^{2}}}\right)^{n} \prod_{i=1}^{n} \exp\left(-\frac{(y_{i} - \hat{\mathbf{x}}_{i}^{\top} \alpha)^{2}}{2\sigma_{n}^{2}}\right)$$

17/35

Probablistic interpretation of least squares (2)

Maximum likelihood estimator

The MLE estimator is the solution of

$$\max_{\alpha} \mathcal{L}(\alpha)$$

In practice people often maximize the log-likelihood in order to have a simpler problem with the same solution.

Maximizing the Log-likelihood

$$\log \left(\mathcal{L}(\alpha) \right) = n \log \left(\frac{1}{\sqrt{2\pi\sigma_n^2}} \right) + \sum_{i=1}^n \log \left(\exp \left(-\frac{(y_i - \hat{\mathbf{x}}_i^\top \alpha)^2}{2\sigma_n^2} \right) \right)$$
$$= n \log \left(\frac{1}{\sqrt{2\pi\sigma_n^2}} \right) - \frac{1}{2\sigma_n^2} \sum_{i=1}^n (y_i - \hat{\mathbf{x}}_i^\top \alpha)^2 = cst - J(\alpha)$$

Maximizing the log-likelihood wrt α is equivalent to minimizing $J(\alpha)$.

Why regularize ?

Least Squares

We minimize the prediction error on the training data:

$$\min_{\alpha} \quad J(\alpha) \qquad ext{avec} \quad J(\alpha) = rac{1}{2} ||\mathbf{y} - \mathbf{X} \alpha||^2$$

Problem solution is

$$\widehat{oldsymbol{lpha}} = \left(oldsymbol{\mathsf{X}}^ op oldsymbol{\mathsf{X}}
ight)^{-1} oldsymbol{\mathsf{X}}^ op oldsymbol{\mathsf{y}}$$

Numerical problems

- ▶ When n < d + 1, matrix **X**^T**X** is non-invertible.
- ▶ There exists an infinity of solutions, problem is ill-posed.
- \Rightarrow regularization (among all possible solutions, pick the simplest).

Ridge Regression

Optimization problem

$$\min_{\mathbf{w},b} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^\top \mathbf{w} - b)^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$
(12)

- ▶ We add a regularization term $\|\mathbf{w}\|^2$ weighted by the regularization coefficient $\lambda \ge 0$.
- Parameter λ can be chosen to limit over-fitting on the data.
- ▶ This regularization promotes parameters **w** of minimal norm.
- It make the optimization problem strictly convex (a unique solution).
- When $\lambda = 0$ problem boils down to the least squares (special case).

Matrix form of ridge regression

$$\min_{\alpha} \left\{ J'(\alpha) = \frac{1}{2} ||\mathbf{y} - \mathbf{X}\alpha||^2 + \frac{\lambda}{2} \alpha^{\top} \mathbf{S}\alpha \right\}$$
(13)

with $\mathbf{S} \in \mathbb{R}^{(d+1) imes (d+1)}$ a matrix defined as

 ${\bf S}$ is a diagonal matrix containing 1 on the diagonal except for the last term equal to 0 . Problem (12) and (13) are equivalent because

$$\boldsymbol{\alpha}^{\top} \mathbf{S} \boldsymbol{\alpha} = \sum_{i,j=1}^{d+1} \alpha_i \alpha_j S_{i,j} = \sum_{i=1}^{d} \alpha_i^2 = \sum_{i=1}^{d} \mathbf{w}_i^2 = \|\mathbf{w}\|^2$$
(15)

21/35

Gradient computation

$$J'(\alpha) = \frac{1}{2}\mathbf{y}^{\mathsf{T}}\mathbf{y} - \alpha^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} + \underbrace{\frac{1}{2}\alpha^{\mathsf{T}}(\mathbf{x}^{\mathsf{T}}\mathbf{x}+\lambda\mathbf{s})\alpha}{\frac{1}{2}\alpha^{\mathsf{T}}\mathbf{x}^{\mathsf{T}}\mathbf{x}\alpha + \frac{\lambda}{2}\alpha^{\mathsf{T}}\mathbf{s}\alpha}_{\partial\alpha_{i}} = 0 - p_{i} + \frac{1}{2}\sum_{j=1}^{d+1}(M_{ij} + M_{ji})\alpha_{j}$$

with $\mathbf{p} = \mathbf{X}^{\top}\mathbf{y}$ and $\mathbf{M} = \mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{S}$

$$\begin{aligned} & \bullet \quad \frac{\partial \boldsymbol{\alpha}^{\top} \mathbf{p}}{\partial \alpha_{i}} = \frac{\partial \sum_{j=1}^{d+1} p_{j} \alpha_{j}}{\partial \alpha_{i}} = p_{i} \\ & \bullet \quad \frac{\partial \boldsymbol{\alpha}^{\top} \mathbf{M} \boldsymbol{\alpha}}{\partial \alpha_{i}} = \frac{\partial \sum_{j=1}^{d+1} \sum_{k=1}^{d+1} \alpha_{j} \alpha_{k} M_{jk}}{\partial \alpha_{i}} = \sum_{j=1}^{d+1} \alpha_{j} M_{ji} + \sum_{k=1}^{d+1} \alpha_{k} M_{ik} \end{aligned}$$

because (uv)' = uv' + u'v with $u = \alpha_j$ and $v = \sum_{k=1}^{d+1} \alpha_k M_{jk}$

$$abla J'(\widehat{lpha}) = -\mathbf{p} + \mathbf{M} \mathbf{\alpha} = -\mathbf{X}^{\top} \mathbf{y} + (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{S}) \widehat{\mathbf{\alpha}}$$

Ridge regression solution

Minimizing the cost $J'(\alpha)$ corresponds to finding the parameter α that lads to a null gradient:

$$abla J'(\widehat{lpha}) = 0 \Leftrightarrow -\mathbf{X}^{ op}\mathbf{y} \ + \ (\mathbf{X}^{ op}\mathbf{X} + \lambda\mathbf{S})\widehat{lpha} = 0$$

The solution of the minimization problem for ridge regression is the vector $\widehat{\alpha}$ defined as :

$$\widehat{\boldsymbol{lpha}} = \left(\mathbf{X}^{ op} \mathbf{X} + \lambda \mathbf{S}
ight)^{-1} \mathbf{X}^{ op} \mathbf{y}$$

Regularization

Matrix **S** adds λ on the diagonal of $\mathbf{X}^{\top}\mathbf{X}$, making the matrix $\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{S}$ invertible. The roblem is now well posed and has a unique solution.

Probabilistic interpretation of Ridge Regression

Prior distribution for the parameters

- In LS we had no prior information about α.
- ▶ We suppose that the **w** parameter has been drawn from **w** ~ $\mathcal{N}(\mathbf{0}, \sigma_p^2 \mathbf{I})$.
- Probability of a given **w** is : $p(\mathbf{w}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma_{p}^{2}}} \exp\left(-\frac{(w_{k})^{2}}{2\sigma_{p}^{2}}\right)$

Maximum likelihood estimator

$$egin{aligned} \log\left(\mathcal{L}(oldsymbollpha)
ight) &= cst - rac{1}{2\sigma_n^2}\sum_{i=1}^n(y_i - \hat{oldsymbol x}_i^ opoldsymbollpha)^2 - rac{1}{2\sigma_p^2}\sum_{k=1}^d(w_k)^2 \ &= cst - rac{1}{2\sigma_n^2}\sum_{i=1}^n(y_i - \hat{oldsymbol x}_i^ opoldsymbollpha)^2 - rac{1}{2\sigma_p^2}\|oldsymbol w\|^2 \end{aligned}$$

- Maximizing the log-likelihood wrt α is equivalent to minimizing $J(\alpha)$.
- Problems are equivalent when $\lambda = \frac{\sigma_a^2}{\sigma_z^2}$.

Lasso estimator

$$\min_{\mathbf{w},b} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \mathbf{w} - b)^2 + \lambda \sum_{k=1}^{d} |w_k|$$
(16)

Optimization problem

- $\|\mathbf{w}\|_1 = \sum_{k=1}^d |w_k|$ is the L1 norm of vector \mathbf{w} .
- Objective function is non differentiable in $w_k = 0, \forall k$.
- For a large enough λ the solution of the problem is sparse (some components of w are exactly 0).
- ► The problem is equivalent to

$$\min_{\mathbf{w},b,\|\mathbf{w}\|_{1} \le \mu} \quad \frac{1}{2} \sum_{i=1}^{n} (y_{i} - \mathbf{x}_{i}^{\top} \mathbf{w} - b)^{2}$$
(17)

I.e. there exists a μ that leads to the same solution of the problem for a given $\lambda.$

25/35

Lasso with no bias

Data and model

▶ If the model has no bias *b* it means that the prediction can be expressed as

$$f(\mathbf{x}) = \sum_i x_i w_i = \mathbf{x}^\top \mathbf{w}$$

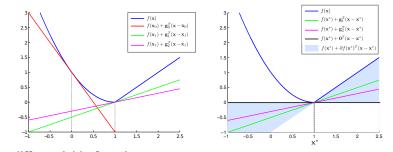
- ▶ $X' \in \mathbb{R}^{n \times d}$ is the X matrix without the last columns containing ones.
- ▶ Prediction can be done with done with X'w and w is teh only parameters

Matrix form of the optimization problem

$$\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{y} - \mathbf{X}'\mathbf{w}\|^2 + \lambda \|\mathbf{w}\|_1 \tag{18}$$

- In the remaining we will focus on the Lasso with no bias for readability.
- Extension of the result when adding the bias is tedious but straightforward.

Subgradients and subdifferential



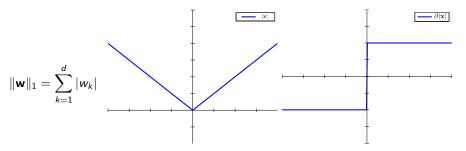
Non differentiable function

- A non differentiable function might not have a gradient (ex $|\cdot|$ in 0).
- > The tool used in place of gradient is the subdifferential and subgradients.
- For a convex function $f(\mathbf{x})$, **g** is a subgradient of f in \mathbf{x}_0 if

$$f(\mathbf{x}) \ge f(\mathbf{x}_0) + \mathbf{g}^\top (\mathbf{x} - \mathbf{x}_0)$$
(19)

- The set of all subgradients at \mathbf{x}_0 is the subdifferential $\partial f(\mathbf{x}_0)$.
- **•** \mathbf{x}_0 is a minimum of the convex function f if $\mathbf{0} \in \partial f(\mathbf{x}_0)$.

Subdifferential for the L1 norm



L1 norm

The subdifferential is of the form

$$\partial \|\mathbf{w}\|_1 = \begin{cases} \mathbf{g} : \|\mathbf{g}\|_{\infty} \le 1 & \text{si } \mathbf{w} = 0\\ \mathbf{g} : \|\mathbf{g}\|_{\infty} \le 1 \text{ et } \mathbf{g}^T \mathbf{w} = \|\mathbf{w}\|_1 & \text{si } \mathbf{w} \neq 0 \end{cases}$$

► Which give

$$\partial \|\mathbf{w}\|_1 = \begin{cases} \mathbf{g} : g_k \in [-1, 1] & \text{si } \mathbf{w} = 0 \\ \mathbf{g} : g_k = sign(w_k) & \text{si } \mathbf{w} \neq 0 \end{cases}$$

Interpreting optimality conditions

Correlation with the residue

$$c_k = \mathbf{X}_k^{\prime \mathsf{T}}(\mathbf{y} - \mathbf{X}^{\prime} \mathbf{w}^{\star}) = \|\mathbf{X}_{\cdot,k}\| \|\mathbf{y} - \mathbf{X} \mathbf{w}^{\star}\| \cos(\theta)$$

- c_k is the scalar product between the feature k and the residuals $\epsilon = \mathbf{y} \mathbf{X}\mathbf{w}^*$.
- $\blacktriangleright \theta$ is the angle between the two vectors.
- ▶ $c_k = 0$, $\forall k$ for Least Squares regression (optimality condition).

Effect of the regularization parameter λ

- $\lambda = 0$ boils down to Least Squares (no sparsity).
- If λ is small we have $w_k = 0$ only for variable k where

$$|\mathbf{X}_k^{\prime T}(\mathbf{y} - \mathbf{X}^{\prime} \mathbf{w}^{\star})| \leq \lambda$$

• If λ is very large at some point we have for all k,

$$\mathbf{X}_k'^{\,\prime} \, \mathbf{y} | \leq \lambda$$
 which means $w_k = 0, \, orall k.$

Optimality conditions of the Lasso

Optimality conditions

 \boldsymbol{w}^{\star} is a solution of the optimization problem if

$$oldsymbol{0} \in \partial J_{\textit{lasso}}(oldsymbol{w}^{\star}) \hspace{0.5cm} ext{with} \hspace{0.5cm} J_{\textit{lasso}}(oldsymbol{w}) = rac{1}{2} \|oldsymbol{y} - oldsymbol{X}'oldsymbol{w}\|^2 + \lambda \|oldsymbol{w}\|_1$$

This can be reformulated as the following condition

$$-{\boldsymbol{\mathsf{X}}}'^{\top}({\boldsymbol{\mathsf{y}}}-{\boldsymbol{\mathsf{X}}}'{\boldsymbol{\mathsf{w}}}^{\star})+\lambda{\boldsymbol{\mathsf{g}}}={\boldsymbol{\mathsf{0}}} \quad \text{ with } \quad {\boldsymbol{\mathsf{g}}}\in\partial\|{\boldsymbol{\mathsf{w}}}^{\star}\|_1$$

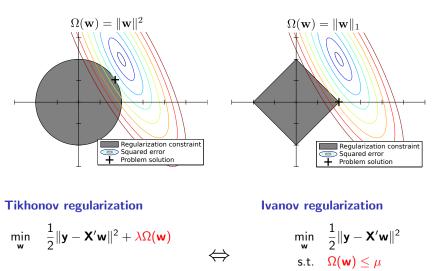
Conditions on the components of w^{\star}

$$\begin{array}{ll} w_k^{\star} \neq 0 & \Rightarrow & -\mathbf{X}_k^{\prime T} (\mathbf{y} - \mathbf{X}^{\prime} \mathbf{w}^{\star}) + \lambda \text{sign}(w_k^{\star}) = 0 \\ w_k^{\star} = 0 & \Rightarrow & |\mathbf{X}_k^{\prime T} (\mathbf{y} - \mathbf{X}^{\prime} \mathbf{w}^{\star})| \le \lambda \end{array}$$

- **\triangleright X**[']_k is the *k*th column of **X**['] (feature *k*).
- The is no closed-form solution except for special cases of X' (orthogonality).

30/35

L2 VS L1 regularization



The two optimization problems are equivalent for a strictly convex function Ω .

Solving the optimization problem

Least-angle regression (LARS)

- Algorithm developed by B. Efron, T. Hastie, I. Johnstone and R. Tibshirani.
- > Allows to find efficiently the whole regularization path (all solution for all λ)
- Potiential problems with highly correlated variables.

Proximal gradient descent (PGD)

- Subgradientd ecsent is known to converge slowly.
- Proximal gradient descent allows for acceleration of the resolution.
- Can be seen a a Majoration-Minimization method.
- Each iteration is a simple soft thresholding of the parameter.
- Can be coupled for active sets to speedup sparse solutions.

Coordinate descent algorithm

- > Optimize each components of **w** independently until conergence.
- Very fast for sparse solutions.

Coordinate descent for the Lasso

Algorithm

- Select an initial vector \mathbf{w} (usually $\mathbf{w} = \mathbf{0}$).
- ▶ For all $k : w_k \leftarrow min_{w_k} \quad J_{lasso}(\mathbf{w})$ with all $w_j, j \neq k$ fixed
- Repeat until optimality conditions are statisfied.

Iteration for w_k

$$\begin{array}{ll} \min_{w_k} & \frac{1}{2} \| \mathbf{y} - \mathbf{X}' \mathbf{w} \|_2^2 + \lambda \| \mathbf{w} \|_1 \\ \min_{w_k} & \frac{1}{2} \| \mathbf{y} - \sum_{j \neq k} \mathbf{X}'_i \mathbf{w}_i - \mathbf{X}'_k \mathbf{w}_k \|_2^2 + \lambda |w_k| \\ \min_{w_k} & \frac{1}{2} \| \mathbf{s} - \mathbf{X}'_k \mathbf{w}_k \|_2^2 + \lambda |w_k| \end{array}$$

were $\mathbf{s} = \mathbf{y} - \sum_{j \neq k} \mathbf{X}'_i \mathbf{w}_i$ is the residual wrt w_k . The last problem is a Lasso with only one variable, its solution is

$$w_k^{\star} = \operatorname{sign}(\mathbf{X}_k^{\prime T} \mathbf{s})(|\mathbf{X}_k^{\prime T} \mathbf{s}| - \lambda)_{+}$$

This operator is called the soft thresholding.

33/35

Regularized linear regression

General problem formulation:

$$\min_{\mathbf{w},b} \quad \sum_{i=1}^{n} L(y_i, \mathbf{w}^{\top} \mathbf{x}_i + b) + \lambda \Omega(w)$$
(20)

With

▶ $L(\cdots)$ a loss function.

• $\Omega(\cdot)$ a regularization term.

Examples:

Loss function $L(y, \hat{y})$

- ($y \hat{y}$)², quadratic (this course).
- ▶ $|y \hat{y}|$, absolute value.
- $\min(0, |y \hat{y}| \epsilon)$ epsilon insensitive

Regularizations $\Omega(\mathbf{w})$

- \blacktriangleright $\|\mathbf{w}\|_2^2$, quadratic.
- \blacktriangleright $\|\mathbf{w}\|_1$, ℓ_1 norm.
- ▶ w[⊤]Σw, Mahalanobis.