
1/37

Linear classification

R. Flamary

January 18, 2019

2/37

Course overview
Introduction

Learning problem
Training data

Linear Discriminant Analysis
Bayesian decision
Regularized LDA

Logistic regression
Optimization problem
Gradient descent
Newton’s descent
Regularization

Rosenblatt’s perceptron
Perceptron
Optimization problem

Support vector machines
Optimization problems

Conclusion on linear prediction
Data fitting

3/37

Course objective

Introduction

I Binary linear classification.

I Convex optimization.

Linear classification methods

I Logistic regression.

I Rosenbtatt’s Perceptron.

I Support Vector Machines.

Convex optimization

I Gradient descent.

I Newton’s descent.

I Stochastic gradients.

We will focus on binary classification.

4/37

Linear Prediction

Linear function
Function f : Rd → R, can be expressed as

f (x) =
d∑

i=1

wixi + b = x>w + b = [x>1]α (1)

with w ∈ Rd a vector defining an hyperplane in Rd et b ∈ R a bias term
displacing the function along the normal w of the hyperplane. All parameters

can be stored in a unique vector α =

[
w
b

]
of dimensionality Rd+1

concatenating w and b.

Objective of linear prediction

I Regression: f (·) ∈ R.

I Classification: sign(f (·)) ∈ {−1, 1}.

5/37

Linear classification

Objective

I Train a linear function f (·) that predicts a binary value y ∈ {−1, 1} from
an observation x ∈ Rd .

I In practice, we seek to estimate the coefficients (w, b) of f (·) using the
training data {xi , yi}i=1,...,n.

I The predicted class is selected as the sign of function f (·)

Exemples

I Optical character recognition.

I Computer Aided Diagnosis.

I Quality inspection.

6/37

How do we store training data ?

X =

x>1 1
x>2 1
...

...
x>i 1
...

...
x>n 1

=

x11 x12 . . . x1j . . . x1d 1
x21 x22 . . . x2j . . . x2d 1

...
...

...
...

...
...

...
xi1 xi2 . . . xij . . . xid 1
...

...
...

...
...

...
...

xn1 xn2 . . . xnj . . . xnd 1

, y =

y1
y2
...
yi
...
yn

Training data

I xi ∈ Rd observations for i = 1, . . . , n.

I yi ∈ R values to predict for i = 1, . . . , n.

Matrix form:

I X ∈ Rn×(d+1) such that x = [x1, x2, . . . , xn, e]> with e ∈ Rd and ei = 1,∀i
I y ∈ Rn such that y = [y1, y2, . . . , yn]>.

I α ∈ Rd+1 is a vector such that α =

[
w
b

]

7/37

Linear Discriminant Analysis (LDA)

+

+
+

+

+
+

+

+
+

+ +
+

+
+

+

+

+

+
+

+

+
+

+

+

+

++
+

+
+ +

++

+

+

Positive example

Negative example

Mean

Mean

Hyperplane

I Bayesian decision method using likelihood ratio for predicting a class.

I We suppose that samples are drawn from Gaussian distributions N (µ1,Σ)
for class ω1 and N (µ2,Σ) for class ω2.

I p1 and p2 are the probability of a sample being positive and negative.

I The decision function is linear thanks to the shared covariance Σ between
the classes.

8/37

Likelihood ratio

Decision function

I The conditional probabilities for each class are

P(x|ω1) = det(2πΣ)−
1
2 exp

(
−1

2
(x− µ1)>Σ−1(x− µ1)

)

I We take as decision function the result of the likelihood ratio.

I If P(ω1|x) > P(ω2|x) then choose ω1 else ω2:

ω1

P(ω1|x) ≷ P(ω2|x)
ω2

⇔
ω1

P(x|ω1)P(ω1) ≷ P(x|ω2)P(ω2)
ω2

I The decision is the function f such that :

f (x) = log

(
P(ω1|x)

P(ω2|x)

)
= log

(
P(x|ω1)P(ω1)

P(x|ω2)P(ω2)

)

The function will be positive if P(ω1|x) > P(ω2|x) else negative.
Its sign recovers the likelihood ratio decision.

9/37

Decision function

f (x) = log

(
P(ω1|x)

P(ω2|x)

)
= log

(
P(x|ω1)P(ω1)

P(x|ω2)P(ω2)

)

= −1

2
(x− µ1)>Σ−1(x− µ1) +

1

2
(x− µ2)>Σ−1(x− µ2) + log(p1)− log(p2)

= x>Σ−1µ1 −
1

2
µ>1 Σ−1µ1 − x>Σ−1µ2 +

1

2
µ>2 Σ−1µ2 + log(p1)− log(p2)

= x>Σ−1(µ1 − µ2)− 1

2
µ>1 Σ−1µ1 +

1

2
µ>2 Σ−1µ2 + log(p1)− log(p2)

= x>Σ−1(µ1 − µ2) +
1

2
(µ1 + µ2)>Σ−1(µ1 − µ2) + log(p1)− log(p2)

= x>w + b

with

w = Σ−1(µ1 − µ2), and b =
1

2
w>(µ1 + µ2) + log(p1)− log(p2)

10/37

Regularized LDA

LDA parameter estimation

w = Σ−1(µ1 − µ2), and b =
1

2
w>(µ1 + µ2) + log(p1)− log(p2)

I Σ, µ1,µ2, p1, p2 often unknown, estimated from dataset.

I Σ can be non invertible (not enough samples).

I Risk of overfitting.

Regularized LDA parameter estimation

w = (Σ + λI)−1(µ1 − µ2), and b =
1

2
w>(µ1 + µ2) + log(p1)− log(p2)

I I is the identity matrix and λ ≥ 0 a regularization parameter.

I Makes the matrix invertible and the solution unique.

11/37

Fisher Discriminant Analysis

Multiclass LDA

I We suppose that ∀k samples from class k are drawn from N (µk ,Σ)

I We define matrix Σb such that for all classes 1, . . . ,C

Σb =
1

C

C∑

k=1

(µk − µ)(µk − µ)> where µ =
1

C

C∑

k=1

µk

Fisher Discriminant Analysis

max
w,‖w‖=1

w>Σbw

w>Σw

I We seek for a projection w that maximize the distance between classes
while minimizing the variance of each class.

I Solutions of the problem are the eignevectors of Σ−1Σb.

I Special case with two class is exactly the solution of Binary LDA.

12/37

Conclusion on LDA

+

+
+

+

+
+

+

+
+

+ +
+

+
+

+

+

+

+
+

+

+
+

+

+

+

++
+

+
+ +

++

+

+

Positive example

Negative example

Mean

Mean

Hyperplane

Pros

I Probabilistic model, probabilities can be estimated.

I Closed form solution when the distribution parameters are known

I Regularization helps avoiding over-fitting.

I Extension to multiclass with Fisher Discriminant.

Cons

I Gaussian distribution parameters have to be estimated.

I All classes are supposed to have the same covariance matrix Σ.

13/37

Logistic regression

Objective

I Train a linear discriminant function.

I Model directly conditional probabilities (predict probabilities).

I Avoid parameter estimations for distributions such as Gaussians.

Approach

I We suppose a conditional probability P(ω1|x) of the form:

P(ω1|x) =
exp(w>x + b)

1 + exp(w>x + b)
=

1

1 + exp(−w>x− b)
(2)

and so

P(ω2|x) = 1− P(ω1|x) =
1

1 + exp(w>x + b)
(3)

14/37

Likelihood ratio

Decision function

I We take as decision function the result of the likelihood ratio.

I If P(ω1|x) > P(ω2|x) then choose ω1 else ω2:

ou
ω1

P(ω1|x) ≷ P(ω2|x)
ω2

I The decision is function f such that :

f (x) = log

(
P(ω1|x)

P(ω2|x)

)
= log(exp(w>x + b)) = w>x + b

I Its sign recovers the decision of the likelihood ratio.

15/37

Optimization problem

Log-likelihood

We want to maximize the log-likelihood on the data, which means minimizing:

J(w, b) = − log

(∏

i

P(yi |xi)
)

= −
∑

i∈I1
log(P(ω1|xi))−

∑

i∈I2
log(P(ω2|xi)) (4)

where I1 and I2 are the set of examples from class ω1 and ω2 respectively.

Objective function

We define the following objective function:

J(w, b) =
∑

i∈I1
log(1 + exp(−w>xi − b)) +

∑

i∈I2
log(1 + exp(w>xi + b))

=
∑

i

log(1 + exp(−yi (w>xi + b))) (5)

16/37

Gradient computation

I Function J(w, b) is convex and differentiable. In order to compute its
gradient we reformulate it as:

J(α) =
∑

i

log(1 + exp(−yiα>x̃i)) (6)

I Partial derivative of J(α) with respect to αj is

∂J(α)

∂αj
=
∑

i

−yi (x̃i)j exp(−yiα>x̃i)

1 + exp(−yiα>x̃i)
=
∑

i

−yi (x̃i)jpi
1 + pi

(7)

with pi = exp(−yiα>x̃i)

I Which leads to this gradient formulation in its matrix form:

∇αJ(α) = −X>Py (8)

where P is a diagonal matrix of diagonal elements pi
1+pi

that depends on α.

∇αJ(α) = 0 defines a non linear equation that cannot be solved with a
closed form → Iterative optimization method.

17/37

Steepest gradient descent (GD)

Iterative optimization method

I Principle : update an approximate solution at each iteration.

I At iteration t the solution is updated with:

α(t) = α(t−1) + µtdt (9)

where dt is a descent direction which means that d>t ∇αJ(α(t−1)) < 0 and
µt > 0 is the descent step.

Steepest gradient descent (GD)

I We take dt = −∇αJ(α(t−1)), that is obviously a descent direction (the
steepest).

I Step µt has to be chosen small enough to ensure descent.

I Each iteration decrease the objective value but can converge slowly.

18/37

Steepest gradient descent (2)

Algorithm of steepest GD

Initialization of α, µ
repeat

d ← −∇J(α)
α ← α + µd

until Convergence

Algo. for log. reg.

Initialization of α, µ and P = I
repeat

Compute P for current α
d ← X>Py
α ← α + µd

until Convergence

Discussion

I Sensitive to initialization of α.

I We can ensure de decrease of the
objective function at each iteration
with a linesearch:

Backtracking method
Initialization of µ of 0 < ρ < 1.
repeat
µ ← ρµ

until J(α + µd) < J(α)

I Convergence conditions (when to
stop) is discussed later.

19/37

Example of steepest descent

Simulation

I Regularized logistic regression.

I Steepest gradient descent.

I Data (xi , yi) with d = 1:
(1,−1), (2,−1), (3, 1), (4, 1)

I µ = 0.1, λ = 1

I 1000 iterations

I Initialization α0 = [1,−0.5]

I Problem solution : α∗ = [1,−2.5]

Discussion

I Slow convergence around the
solution.

I After 1000 iterations, still not
converged.

I Complexity O(nd) per iteration.

0 0.5 1 1.5 2
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

1

5
10

50

100
1000

w

b

Evolution du vecteur α=[w,b], descente de gradient

0 100 200 300 400 500
1.5

2

2.5

3

3.5
Evolution de cout

J
(α

)

iterations

20/37

Hessian matrix

I The Hessian matrix of a differentiable function is the matrix H ∈ Rd+1×d+1

such that

Hu,v =
∂2J(α)

∂αu∂αv
(10)

It contains all the second order derivatives of the multivariate function J.

I For the logistic regression we have

∂2J(α)

∂αu∂αv
=
∑

i

(x̃i)u(x̃i)v exp(−yiα>x̃i)

(1 + exp(−yiα>x̃i))2
=
∑

i

(x̃i)u(x̃i)vpi
(1 + pi)2

(11)

I Which can be expressed in matrix form as :

H = X>P̃X (12)

where P̃ is a diagonal matrix of diagonal element pi
(1+pi)2

.

21/37

Newton’s gradient decsent

Principle

I Minimize a quadratic approximation J̃(α) of the function J(α) à each
iteration.

I Minimizing this approximation is equivalent to taking
d = −H−1∇αJ(α(t−1)) as direction.

I If the function J is convex , H is positive definite and d is provably a
descent direction.

Newtons’s gradient descent

Initialization of α, µ et P = I et P̃ = I
repeat

UpdateP and P̃
d ← (X>P̃X)−1X>Py
α ← α + µd

until Convergence

Discussion

I Better convergence speed.

I Needs computation and inverse of
Hessian.

I Iteration much more complex than
steepest.

I If the problem is quadratic,
algorithm converges in one step.

22/37

Example for Newton descent

Simulation

I Regularized logistic regression.

I Newton’s descent.

I Data (xi , yi) with d = 1:
(1,−1), (2,−1), (3, 1), (4, 1)

I µ = 0.1, λ = 1

I 1000 iterations

I Initialization α0 = [1,−0.5]

I Problem solution : α∗ = [1,−2.5]

Discussion

I Converges quickly to the solution.

I After 5 iterations, same position as
100 with steepest decsnet.

I Complexity O(nd2 + d3) per
iteration.

I Quasi-Newton avoid matrix inverse.

0 0.5 1 1.5 2
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

1

550

w

b

Evolution du vecteur α=[w,b], descente de Newton

0 10 20 30 40 50
1.5

2

2.5

3

3.5
Evolution de cout

J
(α

)

iterations

23/37

Convergence and stopping conditions

Convergence

I For an iterative method, when to stop?.

I Convergence of the algorithm is proved under mild conditions (Nocedal,
Convex Optimization)

I A stationary point is reached by the algorithm if:

∇αJ(α) = 0 (13)

Stopping conditions

In practice iterations are stopped with those conditions:

I Norm of the gradient below a threshold : ‖∇αJ(α)‖ < ε

I Relative variation of the objective value below a threshold :

|J(αt)− J(αt−1)|
J(αt−1)| < ε

I Maximum number of iterations tmax reached .
24/37

Régularization

A priori on w

I With an a priori P(w) of the probability distribution of w can be easily
added to the log-likelihood.

I If we suppose that w ∼ N (0, σ2I) then we have

P(w) = e−
‖w‖2
2σ2 (14)

I Maximizing the log-likelihood is then equivalent to minimizing:

J(w, b) =− log

(
P(w)

∏

i

P(yi |xi)
)

= − log (P(w))− log

(∏

i

P(yi |xi)
)

=
∑

i

log(1 + exp(−yiα>x̃i)) +
1

2σ2
‖w‖2 (15)

The additionnal term is exactly the ridge regularization with λ = 1
σ2

I Other a priori about w would lead to a different optimization problem.

25/37

Conclusions about logistic regression

Pros

I Probabilistic modelisation, conditional probability can be estimated.

I Convex problem, strictly convex with regularization.

I Regularization helps avoiding over-fitting.

I Less parameter to estimate than Bayesian approaches such as LDA

d + 1� d2 + 2d + 2︸ ︷︷ ︸
LDA

Cons

I Non-linear problem to optimize and interpret.

I Iterative methods such as gradient descent are necessary.

26/37

Method of Perceptron

History

I Perceptron was proposed in 1957 by Frank Rosenblatt.

I First very simple neuron (linear).

f (x) =
∑

k

wkxk + b

I Able to train only on separable data.

Principle

I Seek for an hyperplane defined by f (x) = w>x + b = 0 separating the
classes.

I Iterative method with very small complexity per iteration.

I Update (w, b) on mis-classified examples.

I Stop the iterations when all examples are well classified.

27/37

Optimization problem

Objective function

The percetron is equivalent to minimizing:

J(α) = J(w, b) = −
∑

i∈M
yi (x>i w + b) =

∑

i

max(0,−yi (x>i w + b)) (16)

where M is the set of all misclassified examples.

Algorithm of perceptron

Initialization of α and µ > 0
repeat

for i ∈ I do
if yi x̃>i α < 0 then

α ← α + µyi x̃i
end if

end for
until yi x̃>i α ≥ 0, ∀i

Discussion

I I define the order in which the
examples are selected.

I Each iteration compute the
gradient for a unique example.

I Algorithm of type “Stochastic
Gradient Descent” (SGD).

I Converges in a finite number of
iterations if the data is separable.

28/37

Example of perceptron solutions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Discussion

I Each green line is a solution.

I Final solution depends on initialization and order of sample update.

I Note that the hyperplane are often close to one class or the other.

I Do those solutions generalize well?

29/37

Conclusion on the perceptron

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Avantages

I Historical methods.

I Find a solution in a finite number of iteration for separable data.

I Iterations are very cheap (SGD is still used a lot).

Inconvénients

I No unique solution

I No convergence on non separable data.

I Risque of overfitting since no regularization.

I Bad performances proved in multi-class.
30/37

Support vector machines

Class 1

Class 2

m

Principle

I Find the hyperplane that maximize the margin between the classes

I We want tye samples to be well classified with a margin, leading to the
following constraints:

yi (w>x + b) ≥ 1 ∀i

31/37

Optimization problem

I Distance of a sample to the hyperplane is defined as

d(x) =
|w>x + b|
‖w‖

I Constraints yi (w>x + b) ≥ 1 ensure that the minimal distance of the
samples to the hyperplane is equal to 1

‖w‖ . The margin is then equal to

m =
2

‖w‖ (17)

I Maximizing the margin is then equivalent to minimizing ‖w‖ (also ‖w‖2).

I The final support vector machine optimization problem is then :

min
w,b

‖w‖2

yi (w>x + b) ≥ 1 ∀i (18)

smaples eaxctly on the margin (w>xk + b = yk) are called support vectors.

32/37

Optimization methods

Non separable data (primal formulation)

When the margin constraints are relaxed the optimization problem becomes:

min
w,b

n∑

i=1

max(0, 1− yi (w>xi + b)) +
λ

2
‖w‖2 (19)

Direct solver in the primal with a gradient descent approach.
→ Non-differentiable problem of size d + 1.

Dual formulation

max
β

n∑

i=1

βi −
1

2

n∑

i=1

n∑

j=1

yiβi (x>i xj)yjβj , (20)

subject to
n∑

i=1

βiyi = 0, and 0 ≤ βi ≤
1

2λ
for all i . (21)

The hyperplane can be recovered with w =
∑n

i=1 βiyixi
→ Constrained Quadratic Program (QP) of size n.

33/37

Kernel Trick
I A kernel is a positive definite function of two samples that can be expressed

as a scalar product:
k(x1, x2) = φ(x1)>φ(x2)

I The dual formulation of the problem depends only on scalar product and
can be expressed with kernels:

max
β

n∑

i=1

βi −
1

2

n∑

i=1

n∑

j=1

yiβik(xi , xj)yjβj , (22)

subject to
n∑

i=1

βiyi = 0, and 0 ≤ βi ≤
1

2nλ
for all i . (23)

I The prediction is then of the form:

f (x) =
n∑

i=1

βik(x, xi) + b

where b = yk −
∑n

i=1 βik(xk , xi) can be estimated from a sample k on the
margin where f (xk) = yk .

34/37

Conclusion for the SVM

Ø

Avantages
I Optimization problem is strictly convex.

I Consistant method: converges to the Bayes classifier for an infinite number
of training samples.

I Can be extended to non-linear classifier thanks to the kernel trick.

I Very good performances in practice even on small datasets.

Cons
I Non differentiable objective function.

I Do not scale well in the dual that is necessary for non-linear kernel
formulation.

35/37

Regularized linear regression
General problem formulation:

min
w,b

n∑

i=1

L(yi ,w
>xi + b) + λΩ(w) (24)

With
I L(· · ·) a loss function.
I Ω(·) a regularization term.

Examples:

Loss function L(y , ŷ)

I (y − ŷ)2, quadratic.

I |y − ŷ |, absolute value.

I min(0, |y − ŷ | − ε) epsilon
insensitive

I max(0, 1− y ŷ), Hinge.

I log(1 + e−yŷ), logistic.

Regularizations Ω(w)

I ‖w‖22, quadratic.

I ‖w‖1, `1 norm.

I w>Σw, Mahalanobis.

36/37

Data fitting for regression

Cost L(y , ŷ) Smooth. Cvx.
Square (y − ŷ)2 X X
Absolute value |y − ŷ | - X
ε insensible max(0, |y − ŷ | − ε) - X

2 1 0 1
y−ŷ

0

1

2

3

L
(y
,ŷ

)

Coûts de régression

(y−ŷ)2

|y−ŷ|
max(0,|y−ŷ|−ε)

Regression problem

I Objective: predict a real value.

I Error if y 6= ŷ .

I Error measure: |y − ŷ |

37/37

Data fitting for classification
Cost L(y , ŷ) Smooth. Cvx.
0-1 loss (1− sgn(y ŷ))/2 - -
Hinge max(0, 1− y ŷ) - X
Squared Hinge max(0, 1− y ŷ)2 X X
Logistic log(1 + exp(−y ŷ)) X X
Sigmoid (1− tanh(y ŷ))/2 X -
Perceptron max(0,−y ŷ) - X

2 1 0 1
yŷ

0

1

2

3

L
(y
,ŷ

)

Coûts de classification
Coût 0-1
Hinge
Hinge2

Logistique
Sigmoide
Perceptron

Regression problem

I Objective: predict a binary value.

I Error when y 6= signe(ŷ) i.e. if y
and ŷ have a different sign.

I Error measure: y ŷ

I Non symmetric loss.

