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Course objective

Introduction

I Binary linear classification.

I Convex optimization.

Linear classification methods

I Logistic regression.

I Rosenbtatt’s Perceptron.

I Support Vector Machines.

Convex optimization

I Gradient descent.

I Newton’s descent.

I Stochastic gradients.

We will focus on binary classification.
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Linear Prediction

Linear function
Function f : Rd → R, can be expressed as

f (x) =
d∑

i=1

wixi + b = x>w + b = [x>1]α (1)

with w ∈ Rd a vector defining an hyperplane in Rd et b ∈ R a bias term
displacing the function along the normal w of the hyperplane. All parameters

can be stored in a unique vector α =

[
w
b

]
of dimensionality Rd+1

concatenating w and b.

Objective of linear prediction

I Regression: f (·) ∈ R.

I Classification: sign(f (·)) ∈ {−1, 1}.
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Linear classification

Objective

I Train a linear function f (·) that predicts a binary value y ∈ {−1, 1} from
an observation x ∈ Rd .

I In practice, we seek to estimate the coefficients (w, b) of f (·) using the
training data {xi , yi}i=1,...,n.

I The predicted class is selected as the sign of function f (·)

Exemples

I Optical character recognition.

I Computer Aided Diagnosis.

I Quality inspection.
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How do we store training data ?

X =




x>1 1
x>2 1
...

...
x>i 1
...

...
x>n 1




=




x11 x12 . . . x1j . . . x1d 1
x21 x22 . . . x2j . . . x2d 1

...
...

...
...

...
...

...
xi1 xi2 . . . xij . . . xid 1
...

...
...

...
...

...
...

xn1 xn2 . . . xnj . . . xnd 1




, y =




y1
y2
...
yi
...
yn




Training data

I xi ∈ Rd observations for i = 1, . . . , n.

I yi ∈ R values to predict for i = 1, . . . , n.

Matrix form:

I X ∈ Rn×(d+1) such that x = [x1, x2, . . . , xn, e]> with e ∈ Rd and ei = 1,∀i
I y ∈ Rn such that y = [y1, y2, . . . , yn]>.

I α ∈ Rd+1 is a vector such that α =

[
w
b

]
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Linear Discriminant Analysis (LDA)
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I Bayesian decision method using likelihood ratio for predicting a class.

I We suppose that samples are drawn from Gaussian distributions N (µ1,Σ)
for class ω1 and N (µ2,Σ) for class ω2.

I p1 and p2 are the probability of a sample being positive and negative.

I The decision function is linear thanks to the shared covariance Σ between
the classes.
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Likelihood ratio

Decision function

I The conditional probabilities for each class are

P(x|ω1) = det(2πΣ)−
1
2 exp

(
−1

2
(x− µ1)>Σ−1(x− µ1)

)

I We take as decision function the result of the likelihood ratio.

I If P(ω1|x) > P(ω2|x) then choose ω1 else ω2:

ω1

P(ω1|x) ≷ P(ω2|x)
ω2

⇔
ω1

P(x|ω1)P(ω1) ≷ P(x|ω2)P(ω2)
ω2

I The decision is the function f such that :

f (x) = log

(
P(ω1|x)

P(ω2|x)

)
= log

(
P(x|ω1)P(ω1)

P(x|ω2)P(ω2)

)

The function will be positive if P(ω1|x) > P(ω2|x) else negative.
Its sign recovers the likelihood ratio decision.
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Decision function

f (x) = log

(
P(ω1|x)

P(ω2|x)

)
= log

(
P(x|ω1)P(ω1)

P(x|ω2)P(ω2)

)

= −1

2
(x− µ1)>Σ−1(x− µ1) +

1

2
(x− µ2)>Σ−1(x− µ2) + log(p1)− log(p2)

= x>Σ−1µ1 −
1

2
µ>1 Σ−1µ1 − x>Σ−1µ2 +

1

2
µ>2 Σ−1µ2 + log(p1)− log(p2)

= x>Σ−1(µ1 − µ2)− 1

2
µ>1 Σ−1µ1 +

1

2
µ>2 Σ−1µ2 + log(p1)− log(p2)

= x>Σ−1(µ1 − µ2) +
1

2
(µ1 + µ2)>Σ−1(µ1 − µ2) + log(p1)− log(p2)

= x>w + b

with

w = Σ−1(µ1 − µ2), and b =
1

2
w>(µ1 + µ2) + log(p1)− log(p2)
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Regularized LDA

LDA parameter estimation

w = Σ−1(µ1 − µ2), and b =
1

2
w>(µ1 + µ2) + log(p1)− log(p2)

I Σ, µ1,µ2, p1, p2 often unknown, estimated from dataset.

I Σ can be non invertible (not enough samples).

I Risk of overfitting.

Regularized LDA parameter estimation

w = (Σ + λI)−1(µ1 − µ2), and b =
1

2
w>(µ1 + µ2) + log(p1)− log(p2)

I I is the identity matrix and λ ≥ 0 a regularization parameter.

I Makes the matrix invertible and the solution unique.
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Fisher Discriminant Analysis

Multiclass LDA

I We suppose that ∀k samples from class k are drawn from N (µk ,Σ)

I We define matrix Σb such that for all classes 1, . . . ,C

Σb =
1

C

C∑

k=1

(µk − µ)(µk − µ)> where µ =
1

C

C∑

k=1

µk

Fisher Discriminant Analysis

max
w,‖w‖=1

w>Σbw

w>Σw

I We seek for a projection w that maximize the distance between classes
while minimizing the variance of each class.

I Solutions of the problem are the eignevectors of Σ−1Σb.

I Special case with two class is exactly the solution of Binary LDA.
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Conclusion on LDA
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Pros

I Probabilistic model, probabilities can be estimated.

I Closed form solution when the distribution parameters are known

I Regularization helps avoiding over-fitting.

I Extension to multiclass with Fisher Discriminant.

Cons

I Gaussian distribution parameters have to be estimated.

I All classes are supposed to have the same covariance matrix Σ.
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Logistic regression

Objective

I Train a linear discriminant function.

I Model directly conditional probabilities (predict probabilities).

I Avoid parameter estimations for distributions such as Gaussians.

Approach

I We suppose a conditional probability P(ω1|x) of the form:

P(ω1|x) =
exp(w>x + b)

1 + exp(w>x + b)
=

1

1 + exp(−w>x− b)
(2)

and so

P(ω2|x) = 1− P(ω1|x) =
1

1 + exp(w>x + b)
(3)
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Likelihood ratio

Decision function

I We take as decision function the result of the likelihood ratio.

I If P(ω1|x) > P(ω2|x) then choose ω1 else ω2:

ou
ω1

P(ω1|x) ≷ P(ω2|x)
ω2

I The decision is function f such that :

f (x) = log

(
P(ω1|x)

P(ω2|x)

)
= log(exp(w>x + b)) = w>x + b

I Its sign recovers the decision of the likelihood ratio.
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Optimization problem

Log-likelihood

We want to maximize the log-likelihood on the data, which means minimizing:

J(w, b) = − log

(∏

i

P(yi |xi )
)

= −
∑

i∈I1
log(P(ω1|xi ))−

∑

i∈I2
log(P(ω2|xi )) (4)

where I1 and I2 are the set of examples from class ω1 and ω2 respectively.

Objective function

We define the following objective function:

J(w, b) =
∑

i∈I1
log(1 + exp(−w>xi − b)) +

∑

i∈I2
log(1 + exp(w>xi + b))

=
∑

i

log(1 + exp(−yi (w>xi + b))) (5)
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Gradient computation

I Function J(w, b) is convex and differentiable. In order to compute its
gradient we reformulate it as:

J(α) =
∑

i

log(1 + exp(−yiα>x̃i )) (6)

I Partial derivative of J(α) with respect to αj is

∂J(α)

∂αj
=
∑

i

−yi (x̃i )j exp(−yiα>x̃i )

1 + exp(−yiα>x̃i )
=
∑

i

−yi (x̃i )jpi
1 + pi

(7)

with pi = exp(−yiα>x̃i )

I Which leads to this gradient formulation in its matrix form:

∇αJ(α) = −X>Py (8)

where P is a diagonal matrix of diagonal elements pi
1+pi

that depends on α.

∇αJ(α) = 0 defines a non linear equation that cannot be solved with a
closed form → Iterative optimization method.
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Steepest gradient descent (GD)

Iterative optimization method

I Principle : update an approximate solution at each iteration.

I At iteration t the solution is updated with:

α(t) = α(t−1) + µtdt (9)

where dt is a descent direction which means that d>t ∇αJ(α(t−1)) < 0 and
µt > 0 is the descent step.

Steepest gradient descent (GD)

I We take dt = −∇αJ(α(t−1)), that is obviously a descent direction (the
steepest).

I Step µt has to be chosen small enough to ensure descent.

I Each iteration decrease the objective value but can converge slowly.
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Steepest gradient descent (2)

Algorithm of steepest GD

Initialization of α, µ
repeat

d ← −∇J(α)
α ← α + µd

until Convergence

Algo. for log. reg.

Initialization of α, µ and P = I
repeat

Compute P for current α
d ← X>Py
α ← α + µd

until Convergence

Discussion

I Sensitive to initialization of α.

I We can ensure de decrease of the
objective function at each iteration
with a linesearch:

Backtracking method
Initialization of µ of 0 < ρ < 1.
repeat
µ ← ρµ

until J(α + µd) < J(α)

I Convergence conditions (when to
stop) is discussed later.
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Example of steepest descent

Simulation

I Regularized logistic regression.

I Steepest gradient descent.

I Data (xi , yi ) with d = 1:
(1,−1), (2,−1), (3, 1), (4, 1)

I µ = 0.1, λ = 1

I 1000 iterations

I Initialization α0 = [1,−0.5]

I Problem solution : α∗ = [1,−2.5]

Discussion

I Slow convergence around the
solution.

I After 1000 iterations, still not
converged.

I Complexity O(nd) per iteration.

0 0.5 1 1.5 2
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

1

5
10

50

100
1000

w

b

Evolution du vecteur α=[w,b], descente de gradient

0 100 200 300 400 500
1.5

2

2.5

3

3.5
Evolution de cout

J
(α

)

iterations

20/37

Hessian matrix

I The Hessian matrix of a differentiable function is the matrix H ∈ Rd+1×d+1

such that

Hu,v =
∂2J(α)

∂αu∂αv
(10)

It contains all the second order derivatives of the multivariate function J.

I For the logistic regression we have

∂2J(α)

∂αu∂αv
=
∑

i

(x̃i )u(x̃i )v exp(−yiα>x̃i )

(1 + exp(−yiα>x̃i ))2
=
∑

i

(x̃i )u(x̃i )vpi
(1 + pi )2

(11)

I Which can be expressed in matrix form as :

H = X>P̃X (12)

where P̃ is a diagonal matrix of diagonal element pi
(1+pi )2

.
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Newton’s gradient decsent

Principle

I Minimize a quadratic approximation J̃(α) of the function J(α) à each
iteration.

I Minimizing this approximation is equivalent to taking
d = −H−1∇αJ(α(t−1)) as direction.

I If the function J is convex , H is positive definite and d is provably a
descent direction.

Newtons’s gradient descent

Initialization of α, µ et P = I et P̃ = I
repeat

UpdateP and P̃
d ← (X>P̃X)−1X>Py
α ← α + µd

until Convergence

Discussion

I Better convergence speed.

I Needs computation and inverse of
Hessian.

I Iteration much more complex than
steepest.

I If the problem is quadratic,
algorithm converges in one step.
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Example for Newton descent

Simulation

I Regularized logistic regression.

I Newton’s descent.

I Data (xi , yi ) with d = 1:
(1,−1), (2,−1), (3, 1), (4, 1)

I µ = 0.1, λ = 1

I 1000 iterations

I Initialization α0 = [1,−0.5]

I Problem solution : α∗ = [1,−2.5]

Discussion

I Converges quickly to the solution.

I After 5 iterations, same position as
100 with steepest decsnet.

I Complexity O(nd2 + d3) per
iteration.

I Quasi-Newton avoid matrix inverse.
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Convergence and stopping conditions

Convergence

I For an iterative method, when to stop?.

I Convergence of the algorithm is proved under mild conditions (Nocedal,
Convex Optimization)

I A stationary point is reached by the algorithm if:

∇αJ(α) = 0 (13)

Stopping conditions

In practice iterations are stopped with those conditions:

I Norm of the gradient below a threshold : ‖∇αJ(α)‖ < ε

I Relative variation of the objective value below a threshold :

|J(αt)− J(αt−1)|
J(αt−1)| < ε

I Maximum number of iterations tmax reached .
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Régularization

A priori on w

I With an a priori P(w) of the probability distribution of w can be easily
added to the log-likelihood.

I If we suppose that w ∼ N (0, σ2I) then we have

P(w) = e−
‖w‖2
2σ2 (14)

I Maximizing the log-likelihood is then equivalent to minimizing:

J(w, b) =− log

(
P(w)

∏

i

P(yi |xi )
)

= − log (P(w))− log

(∏

i

P(yi |xi )
)

=
∑

i

log(1 + exp(−yiα>x̃i )) +
1

2σ2
‖w‖2 (15)

The additionnal term is exactly the ridge regularization with λ = 1
σ2

I Other a priori about w would lead to a different optimization problem.
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Conclusions about logistic regression

Pros

I Probabilistic modelisation, conditional probability can be estimated.

I Convex problem, strictly convex with regularization.

I Regularization helps avoiding over-fitting.

I Less parameter to estimate than Bayesian approaches such as LDA

d + 1� d2 + 2d + 2︸ ︷︷ ︸
LDA

Cons

I Non-linear problem to optimize and interpret.

I Iterative methods such as gradient descent are necessary.
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Method of Perceptron

History

I Perceptron was proposed in 1957 by Frank Rosenblatt.

I First very simple neuron (linear).

f (x) =
∑

k

wkxk + b

I Able to train only on separable data.

Principle

I Seek for an hyperplane defined by f (x) = w>x + b = 0 separating the
classes.

I Iterative method with very small complexity per iteration.

I Update (w, b) on mis-classified examples.

I Stop the iterations when all examples are well classified.
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Optimization problem

Objective function

The percetron is equivalent to minimizing:

J(α) = J(w, b) = −
∑

i∈M
yi (x>i w + b) =

∑

i

max(0,−yi (x>i w + b)) (16)

where M is the set of all misclassified examples.

Algorithm of perceptron

Initialization of α and µ > 0
repeat

for i ∈ I do
if yi x̃>i α < 0 then

α ← α + µyi x̃i
end if

end for
until yi x̃>i α ≥ 0, ∀i

Discussion

I I define the order in which the
examples are selected.

I Each iteration compute the
gradient for a unique example.

I Algorithm of type “Stochastic
Gradient Descent” (SGD).

I Converges in a finite number of
iterations if the data is separable.
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Example of perceptron solutions
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Discussion

I Each green line is a solution.

I Final solution depends on initialization and order of sample update.

I Note that the hyperplane are often close to one class or the other.

I Do those solutions generalize well?
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Conclusion on the perceptron
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Avantages

I Historical methods.

I Find a solution in a finite number of iteration for separable data.

I Iterations are very cheap (SGD is still used a lot).

Inconvénients

I No unique solution

I No convergence on non separable data.

I Risque of overfitting since no regularization.

I Bad performances proved in multi-class.
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Support vector machines

Class 1

Class 2

m

Principle

I Find the hyperplane that maximize the margin between the classes

I We want tye samples to be well classified with a margin, leading to the
following constraints:

yi (w>x + b) ≥ 1 ∀i
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Optimization problem

I Distance of a sample to the hyperplane is defined as

d(x) =
|w>x + b|
‖w‖

I Constraints yi (w>x + b) ≥ 1 ensure that the minimal distance of the
samples to the hyperplane is equal to 1

‖w‖ . The margin is then equal to

m =
2

‖w‖ (17)

I Maximizing the margin is then equivalent to minimizing ‖w‖ (also ‖w‖2).

I The final support vector machine optimization problem is then :

min
w,b

‖w‖2

yi (w>x + b) ≥ 1 ∀i (18)

smaples eaxctly on the margin (w>xk + b = yk) are called support vectors.
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Optimization methods

Non separable data (primal formulation)

When the margin constraints are relaxed the optimization problem becomes:

min
w,b

n∑

i=1

max(0, 1− yi (w>xi + b)) +
λ

2
‖w‖2 (19)

Direct solver in the primal with a gradient descent approach.
→ Non-differentiable problem of size d + 1.

Dual formulation

max
β

n∑

i=1

βi −
1

2

n∑

i=1

n∑

j=1

yiβi (x>i xj)yjβj , (20)

subject to
n∑

i=1

βiyi = 0, and 0 ≤ βi ≤
1

2λ
for all i . (21)

The hyperplane can be recovered with w =
∑n

i=1 βiyixi
→ Constrained Quadratic Program (QP) of size n.
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Kernel Trick
I A kernel is a positive definite function of two samples that can be expressed

as a scalar product:
k(x1, x2) = φ(x1)>φ(x2)

I The dual formulation of the problem depends only on scalar product and
can be expressed with kernels:

max
β

n∑

i=1

βi −
1

2

n∑

i=1

n∑

j=1

yiβik(xi , xj)yjβj , (22)

subject to
n∑

i=1

βiyi = 0, and 0 ≤ βi ≤
1

2nλ
for all i . (23)

I The prediction is then of the form:

f (x) =
n∑

i=1

βik(x, xi ) + b

where b = yk −
∑n

i=1 βik(xk , xi ) can be estimated from a sample k on the
margin where f (xk) = yk .
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Conclusion for the SVM

Ø

Avantages
I Optimization problem is strictly convex.

I Consistant method: converges to the Bayes classifier for an infinite number
of training samples.

I Can be extended to non-linear classifier thanks to the kernel trick.

I Very good performances in practice even on small datasets.

Cons
I Non differentiable objective function.

I Do not scale well in the dual that is necessary for non-linear kernel
formulation.
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Regularized linear regression
General problem formulation:

min
w,b

n∑

i=1

L(yi ,w
>xi + b) + λΩ(w) (24)

With
I L(· · · ) a loss function.
I Ω(·) a regularization term.

Examples:

Loss function L(y , ŷ)

I (y − ŷ)2, quadratic.

I |y − ŷ |, absolute value.

I min(0, |y − ŷ | − ε) epsilon
insensitive

I max(0, 1− y ŷ), Hinge.

I log(1 + e−yŷ ), logistic.

Regularizations Ω(w)

I ‖w‖22, quadratic.

I ‖w‖1, `1 norm.

I w>Σw, Mahalanobis.
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Data fitting for regression

Cost L(y , ŷ) Smooth. Cvx.
Square (y − ŷ)2 X X
Absolute value |y − ŷ | - X
ε insensible max(0, |y − ŷ | − ε) - X

2 1 0 1
y−ŷ

0

1

2

3

L
(y
,ŷ

)

Coûts de régression

(y−ŷ)2

|y−ŷ|
max(0,|y−ŷ|−ε)

Regression problem

I Objective: predict a real value.

I Error if y 6= ŷ .

I Error measure: |y − ŷ |
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Data fitting for classification
Cost L(y , ŷ) Smooth. Cvx.
0-1 loss (1− sgn(y ŷ))/2 - -
Hinge max(0, 1− y ŷ) - X
Squared Hinge max(0, 1− y ŷ)2 X X
Logistic log(1 + exp(−y ŷ)) X X
Sigmoid (1− tanh(y ŷ))/2 X -
Perceptron max(0,−y ŷ) - X

2 1 0 1
yŷ

0

1

2

3

L
(y
,ŷ

)

Coûts de classification
Coût 0-1
Hinge
Hinge2

Logistique
Sigmoide
Perceptron

Regression problem

I Objective: predict a binary value.

I Error when y 6= signe(ŷ) i.e. if y
and ŷ have a different sign.

I Error measure: y ŷ

I Non symmetric loss.


