
Optimization for data science
Introduction to optimization

R. Flamary

Master Data Science, Institut Polytechnique de Paris

September 13, 2024

1.1.0 - About the course - - 2/57

Objective of this course

Optimization in machine learning and data science

▶ All ML and data science methods rely on numerical optimization.

▶ Understanding the method ≡ understanding the optimization problem.

▶ What is inside the black box of the skikit-learn .fit() function ?

Your objectives

▶ Recognize the properties of optimization problems.

▶ Understand the optimization problems in ML approaches.

▶ Know the theory behind the optimization algorithms.

▶ Find a proper algorithm for a given problem.

▶ Be able to implement an optimization algorithm.

▶ Model new optimization problems (new ML method).

1.1.0 - About the course - - 3/57

Course organization
Information

▶ 6 ECTS, 12 x 3h30 + Exam

▶ From 11/09/24 to 08/01/25

▶ Teaching material :

▶ Moodle : https://moodle.polytechnique.fr/course/view.php?id=20498
▶ My website : https://remi.flamary.com/cours/optim ds.html

▶ All student uploads projects on Moodle (emails not graded)

▶ Grading:

▶ 30% 2/3 Labs with Jupyter notebooks (python)
▶ 30% Final project as Jupyter notebook
▶ 40% 3h final exam

Strong suggestion

▶ Labs use jupyter notebooks, install locally or use Google Colab.

▶ Come with your laptop for all courses.

▶ Always try to do the small exercises : better understanding.

▶ Asks questions if you don’t understand (interrupt if needed).

https://moodle.polytechnique.fr/course/view.php?id=20498
https://remi.flamary.com/cours/optim_ds.html

1.1.0 - About the course - - 4/57

Course teaching staff

Professors

▶ Alexandre Gramfort
Senior Research Scientist at Meta Reality Labs, Paris.
Research topics: Machine learning, optimization, signal
processing, deep learning, brain imaging.

▶ Rémi Flamary
Professor at École Polytechnique, Palaiseau.
Research topics: Machine learning, optimal transport, domain
adaptation, signal processing.

Teaching assistants

▶ Matthieu Terris
Postdoctoral researcher, INRIA Saclay, Mind team.
Research topics: Optimization, image processing.

▶ Joël Garde
PhD Student, Telecom Paris, S2A Team.
Research topics: Optimization, optimal transport.

1.1.0 - About the course - - 5/57

Full course overview
1. Introduction to optimization for data science

1.1 ML optimization problems and linear algebra recap
1.2 Optimization problems and their properties (Convexity, smoothness)

2. Smooth optimization : Gradient descent
2.1 First order algorithms, convergence for smooth and strongly convex functions

3. Smooth Optimization : Quadratic problems
3.1 Solvers for quadratic problems, conjugate gradient
3.2 Linesearch methods

4. Non-smooth Optimization : Proximal methods
4.1 Proximal operator and proximal algorithms
4.2 Lab 1: Lasso and group Lasso

5. Stochastic Gradient Descent
5.1 SGD and variance reduction techniques
5.2 Lab 2: SGD for Logistic regression

6. Standard formulation of constrained optimization problems
6.1 LP, QP and Mixed Integer Programming

7. Coordinate descent
7.1 Algorithms and Labs

8. Newton and quasi-newton methods
8.1 Second order methods and Labs

9. Beyond convex optimization
9.1 Nonconvex reg., Frank-Wolfe, DC programming, autodiff

1.1.0 - About the course - - 6/57

Current course overview
1. Introduction to optimization 2
1.1 About the course 2
1.2 Machine learning as an optimization problem 7

1.2.1 Empirical risk minimization
1.2.2 Sparsity and variable selection
1.2.3 Unsupervised learning

1.3 Properties of optimization problems 17
1.3.1 Linear Algebra recap
1.3.2 Optimization problem formulation
1.3.3 Convexity
1.3.4 Smoothness and constraints
1.3.5 Characterizing a solution

1.4 Conclusion 68

2. Smooth optimization : Gradient descent 72

3. Smooth Optimization : Quadratic problems 72

4. Non-smooth optimization : Proximal methods 72

5. Stochastic Gradient Descent 72

6. Standard formulation of constrained optimization problems 72

7. Coordinate descent 72

8. Newton and quasi-newton methods 72

9. Beyond convex optimization 72

1.2.0 - Machine learning as an optimization problem - - 7/57

Machine learning and data science

Objective of Machine Learning (ML) and Data Science

Teach a machine to process automatically a large amount of data (signals, images,
text, objects) in order to solve a given problem.

Unsupervised learning: Understanding the data.

▶ Clustering

▶ Probability Density Estimation

▶ Generative modeling

▶ Dimensionality reduction

Supervised learning: Learning to predict.

▶ Classification

▶ Regression

Reinforcement learning: Learn from environment.

Train a machine to choose actions that maximize a reward
(games, autonomous vehicles, control).

Optimization is at the core of all ML methods.

1.2.1 - Machine learning as an optimization problem - Empirical risk minimization - 8/57

Empirical risk minimization

Supervised Machine learning

min
f

1

N

N∑
i=1

L(yi, f(xi)) (1)

▶ Find the function f that minimizes the average error L of prediction on a finite
dataset of size N .

▶ Usually fθ is parametrized by θ ∈ Rn so the optimization is done w.r.t. θ.

▶ The objective above is called Empirical Risk Minimization, but beware of
over-fitting when the model f is too complex.

Structural Risk Minimization [Vapnik, 2013]

min
f

1

N

N∑
i=1

L(yi, f(xi)) + λR(f) (2)

▶ R(f) is a regularization term that measure the complexity of f .

▶ λ is a regularization parameter that weight the regularization.

1.2.1 - Machine learning as an optimization problem - Empirical risk minimization - 9/57

Least Square and ridge regression

Linear regression

min
x

1

2
∥Hx− y∥2 + λ

1

2
∥x∥2

▶ Objective: predict a continuous value with a linear model (regression).

▶ Quadratic loss : L(y, fx(h)) =
1
2
(y − fx(h))

2

▶ Quadratic regularization for Ridge : R(x) = 1
2
∥x∥2.

▶ Smooth and strictly convex problem when λ > 0.

▶ Can be solved by solving a linear problem (linear equations).

Non-linear regression

min
θ

1

N

N∑
i=1

(yi − fθ(xi))
2

▶ Classical formulation for regression with neural networks.

▶ Can be non-convex and non-smooth depending on the architecture of fθ.

▶ Harder to regularize (what is the complexity of fθ ?).

1.2.1 - Machine learning as an optimization problem - Empirical risk minimization - 10/57

Data fitting for regression

Cost L(y, ŷ)

Square (y − ŷ)2

Absolute value |y − ŷ|
ϵ insensible max(0, |y − ŷ| − ϵ)

2 1 0 1
y−ŷ

0

1

2

3

L
(y
,ŷ

)

Coûts de régression

(y−ŷ)2

|y−ŷ|
max(0,|y−ŷ|−ε)

Regression problem

▶ Objective: predict a real value.

▶ Error if y ̸= ŷ.

▶ Error measure: |y − ŷ|

1.2.1 - Machine learning as an optimization problem - Empirical risk minimization - 11/57

Data fitting for binary classification

Cost L(y, ŷ)

0-1 loss (1− sgn(yŷ))/2
Hinge max(0, 1− yŷ)
Squared Hinge max(0, 1− yŷ)2

Logistic log(1 + exp(−yŷ))
Sigmoid (1− tanh(yŷ))/2
Perceptron max(0,−yŷ)

2 1 0 1
yŷ

0

1

2

3

L
(y
,ŷ

)

Coûts de classification
Coût 0-1
Hinge
Hinge2

Logistique
Sigmoide
Perceptron

Classification problem

▶ Objective: predict a binary value.

▶ Error when y ̸= signe(ŷ) i.e. if y and ŷ
have a different sign.

▶ Error measure: yŷ

▶ Non symmetric loss.

▶ Multi-class classification with Softmax
output and categorical cross-entropy.

1.2.1 - Machine learning as an optimization problem - Empirical risk minimization - 12/57

Maximum Likelihood estimation

Maximum likelihood principle

▶ pθ is a probability distribution in Rd.

▶ We have access to samples xi drawn I.I.D. from the distribution.

▶ The likelihood for independent samples can be expressed as∏
i

pθ(xi)

▶ The maximum likelihood estimator of θ

θ̂ = argmax
θ

∏
i

pθ(xi)

▶ In practice one can minimize the negative log-likelihood

θ̂ = argmin
θ

−
∑
i

log(pθ(xi))

That is a special case of empirical risk minimization (least square, logistic
regression).

1.2.2 - Machine learning as an optimization problem - Sparsity and variable selection - 13/57

Sparsity and variable selection

Variable selection

▶ In supervised learning variable section aim at finding a subset I ∈ {1, . . . , n} of
all variables that leads to a good prediction.

▶ It is a combinatorial problem w.r.t. the number of variables n.

▶ There is a compromise between number of variables and performance.

Sparsity and linear model

For a linear model the sparsity prior can be expressed as two optimization problems

min
x

L(Hx,y) + λ∥x∥0 or min
x,∥x∥0≤τ

L(Hx,y)

▶ λ ≥ 0 and τ ≥ 0 are regularization parameters.

▶ ∥x∥0 =
∑

i 1|xi|>0 is the number of components in x.

▶ The problem can be reformulated as a Mixed Integer Program.

▶ Often a continuous approximation of the problem is solved (Lasso).

1.2.2 - Machine learning as an optimization problem - Sparsity and variable selection - 14/57

Lasso estimator

min
x

1

2
∥Hx− y∥2 + λ

d∑
k=1

|xk| (3)

Optimization problem

▶ ∥x∥1 =
∑d

k=1 |xk| is the L1 norm of vector w.

▶ Objective function is non differentiable in xk = 0, ∀k.
▶ For a large enough λ the solution of the problem is sparse.

▶ The problem is equivalent to

min
x,∥x∥1≤µ

1

2
∥Hx− y∥2 (4)

I.e. there exists a µ that leads to the same solution of the problem for a given λ.

1.2.3 - Machine learning as an optimization problem - Unsupervised learning - 15/57

K-means clustering

▶ Non convex Optimization problem:

min
x̄k,∀k

N∑
i=1

min
k

∥x̄k − xi∥2

▶ Very simple algorithm :

1. Update cluster membership (find closest x̄k for each samples)
2. Update cluster positions x̄k as mean of all cluster members.

▶ Decrease the objective value at each iteration (can be formulated as block
coordinate descent).

1.2.3 - Machine learning as an optimization problem - Unsupervised learning - 16/57

Optimization for data science

w

0.0 0.5 1.0 1.5 2.0
b−4

−2
0

2
4
6
8
10

Cost function

51020
100

500
1000

Optimization algorithm

w

0.0 0.5 1.0 1.5 2.0
b−4

−2
0

2
4
6
8
10

Trajectory

ML and DS are built on numerical optimization

▶ Most ML methods are optimization problems.

▶ The objective function is the error of the model.

▶ Importance of the optimization algorithm.

Important questions

▶ What are the properties of the optimization problem (F, constraints)?

▶ How to find the good algorithm for a given problem (no free lunch)?

▶ What are the properties on an algorithm (convergence, complexity)?

▶ How to implement an optimization algorithm (speed, scaling)?

1.3.0 - Properties of optimization problems - - 16/57

Section
1. Introduction to optimization 2
1.1 About the course 2
1.2 Machine learning as an optimization problem 7

1.2.1 Empirical risk minimization
1.2.2 Sparsity and variable selection
1.2.3 Unsupervised learning

1.3 Properties of optimization problems 17
1.3.1 Linear Algebra recap
1.3.2 Optimization problem formulation
1.3.3 Convexity
1.3.4 Smoothness and constraints
1.3.5 Characterizing a solution

1.4 Conclusion 68

2. Smooth optimization : Gradient descent 72

3. Smooth Optimization : Quadratic problems 72

4. Non-smooth optimization : Proximal methods 72

5. Stochastic Gradient Descent 72

6. Standard formulation of constrained optimization problems 72

7. Coordinate descent 72

8. Newton and quasi-newton methods 72

9. Beyond convex optimization 72

1.3.1 - Properties of optimization problems - Linear Algebra recap - 17/57

Linear Algebra recap

Notation: vectors and matrices

▶ A vector x ∈ Rn is a column of n real numbers (always column).

▶ A matrix A ∈ Rm×n is a table of m rows and n columns.

▶ The i-th row of A is denoted Ai,: and the j-th column A:,j .

▶ The transpose of A is denoted A⊤ : C = A⊤ ⇔ ci,j = aj,i

▶ Matrix addition and multiplication are defined as for real numbers.

Matrix product

▶ The product of A ∈ Rm×n and B ∈ Rn×p is

C = AB ∈ Rm×p

▶ The element ci,j of C is : ci,j =
∑n

k=1 ai,kbk,j

▶ Matrix product is not commutative (AB ̸= BA).

▶ Special case with B = b a vector, Ab is a linear
combination of the columns of A.

A C

B

p

n

m

p

1.3.1 - Properties of optimization problems - Linear Algebra recap - 18/57

Linear map and properties
Linear maps

▶ A linear map (or linear function) fA : Rn → Rm can be expressed as

fA(x) = Ax

▶ A ∈ Rm×n is the matrix of the linear map.

Properties and rank

▶ The image (or range) of A is the space spanned by the columns of A:

im(A) = {y ∈ Rm|y = Ax, ∀x ∈ Rn}

▶ The kernel (or null space) of A is the set of vectors x such that Ax = 0.

ker(A) = {x ∈ Rn Ax = 0}

▶ The rank of A is the dimension of its range : rank(A) = dim(im(A))

▶ rank(A) ≤ min(m,n) and we have

dim(ker(A)) + rank(A) = n

.

1.3.1 - Properties of optimization problems - Linear Algebra recap - 19/57

Linear maps in real life applications

Computer graphics

▶ Rotation/deformation of objects.

▶ Illumination of objects.

▶ Projection of 3D objects on 2D screen.

Signal and image processing

▶ Many physical processes are linear (wave
propagation, optics, filtering).

▶ Observed signals (astronomy, medial imaging).

▶ Fourier Transform, Wavelet Transform.

▶ Inverse problems/reconstruction to cancel map.

Machine learning

▶ Linear regression and classification (logistic).

▶ Neural networks layers.

▶ Principal Component Analysis (PCA).

Dedicated processors (DSP, GPU, TPU) are optimized for linear algebra operations.

1.3.1 - Properties of optimization problems - Linear Algebra recap - 20/57

Eigenvalues and linear operators

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Original and mapped points

x
Ax

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Displacement vectors

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Eigenvectors Ax=λ x

Eigenvalues and eigenvectors

▶ A vector x ∈ Rn is an eigenvector of a square matrix A ∈ Rn×n if

Ax = λx

▶ λ is the eigenvalue associated with eigenvector x.

▶ The eigenvectors of A are the solutions of the equation (A− λI)x = 0.

▶ The eigenvectors of a symmetric matrix are orthogonal.

▶ If x is an eigenvector then −x and αx are also eigenvectors.

1.3.1 - Properties of optimization problems - Linear Algebra recap - 21/57

Spectral theorem and eigendecomposition

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Original and mapped points

x
Ax

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Displacement vectors

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Eigenvectors Ax=λ x

Spectral Theorem

Le A = A⊤ a symmetric matrix, then there exists a basis of eigenvectors xi ∈ Rn and
their sorted eigenvalues λi (λ1 ≤ · · · ≤ λn) of A such that

1. Orthogonality: x⊤
i xj = 0 for i ̸= j.

2. Unit norm: ∥xi∥ = 1.

3. Eigenvalues: Axi = λixi.

The matrix A can be decomposed as A =
∑

i λixix
⊤
i .

1.3.1 - Properties of optimization problems - Linear Algebra recap - 22/57

Matrix formulation of the spectral theorem

Matrix formulation

▶ Let U = [x1, . . . ,xn] the matrix of eigenvectors of A.

▶ Let λ = [λ1, . . . , λn]
⊤ the vector of sorted eigenvalues.

▶ Let Λ = diag(λ1, . . . , λn) = diag(λ) the diagonal matrix of eigenvalues.

▶ Ortogonality+unit norm : U⊤U =

▶ Eigenvalue: AU = UΛ.

▶ Eigendecomposition/reconstruction :

A = UΛU⊤

Imlementation in Python

▶ Decomposition : lambd,U = numpy.linalg.eig(A)

▶ Reconstruction :

Arec = U @ numpy.diag(lambd) @ U.T

▶ For symmetric matrices : Use numpy.linalg . eig.

1.3.1 - Properties of optimization problems - Linear Algebra recap - 22/57

Matrix formulation of the spectral theorem

Matrix formulation

▶ Let U = [x1, . . . ,xn] the matrix of eigenvectors of A.

▶ Let λ = [λ1, . . . , λn]
⊤ the vector of sorted eigenvalues.

▶ Let Λ = diag(λ1, . . . , λn) = diag(λ) the diagonal matrix of eigenvalues.

▶ Ortogonality+unit norm : U⊤U = In = UU⊤ (orthonormality).

▶ Eigenvalue: AU = UΛ.

▶ Eigendecomposition/reconstruction :

A = UΛU⊤

Imlementation in Python

▶ Decomposition : lambd,U = numpy.linalg.eig(A)

▶ Reconstruction :

Arec = U @ numpy.diag(lambd) @ U.T

▶ For symmetric matrices : Use numpy.linalg . eig.

1.3.1 - Properties of optimization problems - Linear Algebra recap - 22/57

Matrix formulation of the spectral theorem

Matrix formulation

▶ Let U = [x1, . . . ,xn] the matrix of eigenvectors of A.

▶ Let λ = [λ1, . . . , λn]
⊤ the vector of sorted eigenvalues.

▶ Let Λ = diag(λ1, . . . , λn) = diag(λ) the diagonal matrix of eigenvalues.

▶ Ortogonality+unit norm : U⊤U = In = UU⊤ (orthonormality).

▶ Eigenvalue: AU = UΛ.

▶ Eigendecomposition/reconstruction :

A = UΛU⊤

Imlementation in Python

▶ Decomposition : lambd,U = numpy.linalg.eig(A)

▶ Reconstruction : Arec = U @ numpy.diag(lambd) @ U.T

▶ For symmetric matrices : Use numpy.linalg . eig.

1.3.1 - Properties of optimization problems - Linear Algebra recap - 23/57

Singular Value Decomposition (SVD)

SVD Decomposition

Let A ∈ Rn×p a non-square matrix with n > p, then there exists U ∈ Rn×p and
V ∈ Rp×p such that

A = UΣV⊤

▶ Ortogonality : U⊤U = Ip and V⊤V = Ip.

▶ Singular values : σ = [σ1, . . . , σp]
⊤ with 0 ≤ σ1 ≤ · · · ≤ σp, Σ = diag(σ).

▶ Other properties and tools :

▶ The columns of V are the eigenvectors of A⊤A.
▶ Low rank approximation : A ≈ UkΣkV

⊤
k from k largest singular values.

▶ Sparse SVD : low rank approximation from sparse matrix (missing data).

Implementation in Python

▶ Decomposition : U,s,Vt = numpy.linalg.svd(A)

▶ Reconstruction : Arec = U @ numpy.diag(s) @ Vt

▶ Sparse SVD : Uk,sk,Vkt = scipy. sparse . linalg . svds(A,k)

1.3.1 - Properties of optimization problems - Linear Algebra recap - 24/57

Matrix norms and computation

Norms

▶ Frobenius norm : ∥A∥F =
√∑

i,j a
2
i,j = ∥vec(A)∥ = ⟨A,A⟩.

▶ Spectral norm : ∥A∥2 = maxx ̸=0
∥Ax∥2
∥x∥2

= max∥x∥2=1 ∥Ax∥2.
▶ Norm induced by ∥ · ∥p : ∥A∥p = max∥x∥p ∥Ax∥p.

Relation with SVD

▶ ∥A∥F =
√∑

i σ
2
i (A)

▶ ∥A∥2 = maxi σi(A) = σmax(A) = ∥σ(A)∥∞.

▶ Nuclear norm : ∥A∥∗ =
∑

i σi(A) = ∥σ(A)∥1.

Implementation in Python

▶ Frobenius norm : numpy.linalg .norm(A,’fro ’)

▶ Spectral norm : numpy.linalg .norm(A,2)

▶ Nuclear norm : numpy.linalg .norm(A,’nuc’)

1.3.2 - Properties of optimization problems - Optimization problem formulation - 25/57

Numerical optimization problem

Problem formulation

min
x∈C

F (x) (5)

▶ F is the objective function (sometimes called cost function).

▶ x = [x1, . . . , xn]
⊤ ∈ Rn is a vector of n variables.

▶ C ⊆ Rn is the set of admissible solutions.

▶ Objective : Find a solution x⋆ ∈ C, having the minimal value for F such that

F (x⋆) ≤ F (x), ∀x ∈ C.

Assumptions (in this course)

▶ The problem is proper (there exists a solution), F is lower bounded on C.
▶ You have access to F and C (mathematical expression, no black box).

Notation : Lowercase bold is a vector, Uppercase bold is a matrix.

1.3.2 - Properties of optimization problems - Optimization problem formulation - 26/57

Standard constrained optimization

Problem reformulation

min
x∈Rn

F (x)

with hj(x) = 0 ∀j = 1, . . . , p
and gi(x) ≤ 0 ∀i = 1, . . . , q.

(6)

▶ This problem is equivalent to (27) when C can be expressed as

C =
{
x ∈ Rn

∣∣ hj(x) = 0, ∀j = 1, . . . , p and gi(x) ≤ 0, ∀i = 1, . . . , q
}
.

▶ hj and gi define respectively the equality and inequality constraints.

▶ When p = q = 0 the problem is said to be unconstrained and C = Rn.

▶ The complexity of solving problems (27) and (6) depends on the properties of F
and C.

▶ Problem above is a standard formulation for constrained optimization.

1.3.2 - Properties of optimization problems - Optimization problem formulation - 27/57

Definitions

min
x∈C

F (x)

Feasible point

Any point x ∈ C that satisfies the constraints in set C.

Optimal value

Minimal value function on the feasible set C, often denoted as F ⋆.

Optimality/Optimal solution

x⋆ ∈ C is a solution of the optimization problem if satisfies the constraints in set C and

F (x⋆) ≤ F (x), ∀x ∈ C.

x⋆ might not be unique in the general case.

Sub-optimal point

x ∈ C. is an ϵ-suboptimal point of the problem for ϵ > 0 if

F (x) ≤ F (x⋆) + ϵ

Active constraint
gi is considered an active constraint in x if gi(x) = 0.

1.3.2 - Properties of optimization problems - Optimization problem formulation - 28/57

Exercise 1: Positive least squares reformulation

Problem

min
x≥0

∥y −Hx∥2, with y ∈ Rm and H ∈ Rm×n

Exercise

1. Express F (x) and C for the problem above.

F (x) = ∥y −Hx∥2, C = {x ∈ Rn|xi ≥ 0 ∀i} = R+n

2. Find p, q the number of constraints : p=0, q=n

3. Express hj and gi if there are somme constraints:

gi(x) = −xi, ∀i ∈ 1, . . . , n

1.3.2 - Properties of optimization problems - Optimization problem formulation - 28/57

Exercise 1: Positive least squares reformulation

Problem

min
x≥0

∥y −Hx∥2, with y ∈ Rm and H ∈ Rm×n

Exercise

1. Express F (x) and C for the problem above.

F (x) = ∥y −Hx∥2, C = {x ∈ Rn|xi ≥ 0 ∀i} = R+n

2. Find p, q the number of constraints :

p=0, q=n

3. Express hj and gi if there are somme constraints:

gi(x) = −xi, ∀i ∈ 1, . . . , n

1.3.2 - Properties of optimization problems - Optimization problem formulation - 28/57

Exercise 1: Positive least squares reformulation

Problem

min
x≥0

∥y −Hx∥2, with y ∈ Rm and H ∈ Rm×n

Exercise

1. Express F (x) and C for the problem above.

F (x) = ∥y −Hx∥2, C = {x ∈ Rn|xi ≥ 0 ∀i} = R+n

2. Find p, q the number of constraints : p=0, q=n

3. Express hj and gi if there are somme constraints:

gi(x) = −xi, ∀i ∈ 1, . . . , n

1.3.2 - Properties of optimization problems - Optimization problem formulation - 28/57

Exercise 1: Positive least squares reformulation

Problem

min
x≥0

∥y −Hx∥2, with y ∈ Rm and H ∈ Rm×n

Exercise

1. Express F (x) and C for the problem above.

F (x) = ∥y −Hx∥2, C = {x ∈ Rn|xi ≥ 0 ∀i} = R+n

2. Find p, q the number of constraints : p=0, q=n

3. Express hj and gi if there are somme constraints:

gi(x) = −xi, ∀i ∈ 1, . . . , n

1.3.2 - Properties of optimization problems - Optimization problem formulation - 29/57

Numerical optimization algorithm

min
x∈C

F (x)

Iterative optimization algorithm

An iterative algorithm A is an algorithm providing a series x(k) for k = 0, 1, . . . of
iterates x(k+1) = A(x(k)) that converges to a solution x⋆ of the optimization problem
starting from an initial guess x(0).

▶ If F (x(k+1)) ≤ F (x(k)), ∀k then it is called a descent algorithm.

▶ In practice iterations are stopped when a convergence criterion is met.

Convergence of iterative methods
▶ The convergence speed can be expressed in objective value

|F (x(k+1))− F (x⋆)| ≤ γ|F (x(k))− F (x⋆)|q (7)

▶ Or it can be expressed in terms of iterates:

∥x(k+1) − x⋆∥ ≤ γ∥x(k) − x⋆∥q (8)

where γ ∈ [0, 1) and q ≥ 1 is the convergence order (q = 1 linear, q = 2 quadratic...).

1.3.2 - Properties of optimization problems - Optimization problem formulation - 30/57

Properties of optimization problems

Know your optimization problem (and its properties)

▶ They with guide you toward the proper solver.

▶ They tell you how much you can trust the solution (well posed, unique solution).

▶ They will help you design the optimization problem.

Convexity

▶ Well posed problem.

▶ Unique solution when strict
convexity.

Smoothness

▶ Continuity, differentiability

▶ When function smooth, one can
use its gradients.

Solutions

▶ What is a solution of the optimization problem ?

▶ Criterions for reaching a solution (stopping the algorithm).

1.3.3 - Properties of optimization problems - Convexity - 31/57

Convex set

Definition: Convex set
C ⊂ Rn is a convex set if for any two points x,y ∈ C2 and for any 0 ≤ α ≤ 1 we have

αx+ (1− α)y ∈ C

Image from [Boyd and Vandenberghe, 2004]

1.3.3 - Properties of optimization problems - Convexity - 31/57

Convex set

Definition: Convex set
C ⊂ Rn is a convex set if for any two points x,y ∈ C2 and for any 0 ≤ α ≤ 1 we have

αx+ (1− α)y ∈ C

Image from [Boyd and Vandenberghe, 2004]

1.3.3 - Properties of optimization problems - Convexity - 31/57

Convex set

Convex Non convex Non convex

Definition: Convex set
C ⊂ Rn is a convex set if for any two points x,y ∈ C2 and for any 0 ≤ α ≤ 1 we have

αx+ (1− α)y ∈ C

Image from [Boyd and Vandenberghe, 2004]

1.3.3 - Properties of optimization problems - Convexity - 32/57

Examples of convex sets

Examples

▶ Rn

▶ Positive orthant of Rn : Rn
+.

▶ Hyperplan : {x ∈ Rd : a⊤x = b}
▶ Half space: {x ∈ Rd : a⊤x ≤ b}
▶ Polyhedra: {x ∈ Rd : Ax ≤ b}
▶ Gömböc

1.3.3 - Properties of optimization problems - Convexity - 33/57

Operations on set preserving convexity (1)

Intersection

If Xk are convex set ∀k then their intersection

K⋂
k=1

Xk

is also convex.

1.3.3 - Properties of optimization problems - Convexity - 34/57

Operations on set preserving convexity (2)

Cartesian product

If Xk ⊂ Rnk , are convex ∀k = 1, · · · ,M then

X1 ×X2 × · · · × ×XM = {(x1,x2, · · · ,xM) : xk ∈ Xk}

is convex.

Affine transform

If X ⊂ Rd is convex and A(x) 7→ Ax+ b is an affine transform defined by matrix
A ∈ Rp×d and vector b then

A(X) = {A(x) : x ∈ X}

is convex. These transformations include translation and rotations.

1.3.3 - Properties of optimization problems - Convexity - 35/57

Convex function

x y

Convex function
f(αx+ (1 −α)y)
αf(x) + (1 −α)f(y)

Definition: Convex function

A function F is said to be convex if it lies below its chords, that is ∀x,y ∈ Rn

F (αx+ (1− α)y) ≤ αF (x) + (1− α)F (y), with 0 ≤ α ≤ 1. (9)

▶ A function is said to be strictly convex when the two inequalities are strict.

▶ Strict convexity implies that the function has a unique minimum.

▶ If a function F is convex, then the set {x ∈ Rn | F (x) ≤ 0} is convex.

▶ A function F is concave if −F is convex.

1.3.3 - Properties of optimization problems - Convexity - 36/57

Strongly convex function

x y

Strongly convex function
f(αx+ (1 −α)y)
αf(x) + (1 −α)f(y)
αf(x) + (1 −α)f(y) − μα(1 −α)

2 (y− x)2

x y

Non-strongly convex function
f(αx+ (1 −α)y)
αf(x) + (1 −α)f(y)
αf(x) + (1 −α)f(y) − μα(1 −α)

2 (y− x)2

Definition: strong convexity

A function F is said to be µ-strongly convex with µ > 0 if it satisfies ∀x,y ∈ Rn and
0 ≤ α ≤ 1

F (αx+ (1− α)y) ≤ αF (x) + (1− α)F (y)− µ

2
α(1− α)∥x− y∥2, (10)

▶ A µ-strongly convex function is convex and has a unique minimum.

▶ A µ-strongly convex function is upper bounded by a convex quadratic function.

1.3.3 - Properties of optimization problems - Convexity - 37/57

Examples of functions in R

2 1 0 1 2
1

0

1

2

3
Convex functions

f(x)=ax+b
f(x)=exp(x)
f(x)=|x|
f(x)=xlog(x)

2 1 0 1 2
3

2

1

0

1

Concave functions

f(x)=ax+b
f(x)=x^p, p=1/2
f(x)=log(x)

Convex functions
▶ Affine functions : x 7→ ax+ b for all a, b ∈ R.
▶ Exponential functions : x 7→ eax for all a ∈ R.
▶ Power of absolute value : x 7→ |x|p,for all p ≥ 1.

▶ Neg-entropy : x 7→ x log x for x > 0

Concave Functions
▶ Affine functions : x 7→ ax+ b for all a, b ∈ R.
▶ Power : x 7→ xp, for x > 0 and for all 0 ≤ p ≤ 1.

▶ Logarithm : x 7→ log x for x > 0

1.3.3 - Properties of optimization problems - Convexity - 38/57

Operations preserving convexity (1)

Positive sum
Let λ1, λ2 ≥ 0 and f1, f2 two convex function then

λ1f1 + λ2f2

is convex.

Composition with affine function

let A ∈ Rp×d and b ∈ Rp and f : Rp 7→ R be a convex function, the the composition

f(Ax+ b)

is convex

Example

▶ Log barrier : f(x) = −
∑m

i=1 log(bi − a⊤
i x) with domf = {x : a⊤

i x ≤ bi}
▶ Norm of an affine function : f(x) = ∥Ax+ b∥

1.3.3 - Properties of optimization problems - Convexity - 39/57

Operations preserving convexity (2)

Composition

▶ let g : Rd 7→ R be a convex function and h : R 7→ R be a convex and increasing
function, then

f(x) = h(g(x))

is convex.

Maximum

▶ If f1, · · · , fm are convex functions then

f(x) = max
i

{f1(x), · · · , fm(x)}

is convex.

Example

▶ Piecewise linear function: f(x) = maxi=1,··· ,m(a⊤
i x+ b)

1.3.3 - Properties of optimization problems - Convexity - 40/57

Convexity in optimization

Convex optimization problem

min
x∈C

F (x)

▶ The problem is convex if F is a convex function and C is a convex set.

▶ Any local minimizer of a convex function is a global minimizer.

▶ If the function is strictly convex the minimizer is unique.

▶ Maximizing a concave function under convex constraints is a convex problem.

Disciplined Convex Programming [Grant et al., 2006]

▶ Express the objective function and constraints as combination and composition of
operations preserving convexity.

▶ Allows for designing generic solvers (Matlab [Grant and Boyd, 2014], Python
[Diamond and Boyd, 2016]).

1.3.4 - Properties of optimization problems - Smoothness and constraints - 41/57

Smoothness and continuity

Differentiability classes in 1D

Let f be a real function. Then f is of differentiability class Ck if and only if dkf(x)

dxk is
continuous.

▶ C0 is the set of continuous real functions.

▶ C1 is the set of real functions with continuous derivatives.

▶ C2 is the set of real functions with continuous second derivatives.

Exercise 2: Differentiability and convexity

Function Diff. Class Convexity

f(x) = x2

f(x) = ex

f(x) = |x|
f(x) = max(x, 0)

f(x) = sign(x)

f(x) = log(1 + exp(x))

f(x) = 2x+ 1

f(x) = max(x, 0)2

1.3.4 - Properties of optimization problems - Smoothness and constraints - 41/57

Smoothness and continuity

Differentiability classes in 1D

Let f be a real function. Then f is of differentiability class Ck if and only if dkf(x)

dxk is
continuous.

▶ C0 is the set of continuous real functions.

▶ C1 is the set of real functions with continuous derivatives.

▶ C2 is the set of real functions with continuous second derivatives.

Exercise 2: Differentiability and convexity

Function Diff. Class Convexity

f(x) = x2 C∞ ✓
f(x) = ex C∞ ✓
f(x) = |x| C0 ✓
f(x) = max(x, 0) C0 ✓
f(x) = sign(x) Not continuous

f(x) = log(1 + exp(x)) C∞ ✓
f(x) = 2x+ 1 C∞ ✓
f(x) = max(x, 0)2 C1 ✓

1.3.4 - Properties of optimization problems - Smoothness and constraints - 42/57

Gradient of a function

Gradient
The gradient ∇F (x) of a function F : Rn → R at point x is the vector whose
components are the partial derivatives of F

∇xF (x) =

[
∂F (x)

∂x1
, . . . ,

∂F (x)

∂xn

]T

(11)

▶ If the gradient exists ∀x in the domain of F , the function F is called
differentiable.

▶ ∇xF (x) give the steepest direction (where F is increasing the most).

▶ The vector normal to surface (x, F (x)) is given by (∇xF (x),−1).

1.3.4 - Properties of optimization problems - Smoothness and constraints - 43/57

Exercise 3: Gradient computation

Two variables

F (x) = x1 − x1x2 − x2

Compute the gradient ∇xF (x):
∇xF (x) =

Quadratic loss

F (x) = ∥Hx− y∥2

Compute the gradient ∇xF (x):
∇xF (x) =

Exponential with linear function

F (x) = exp(wTx+ b)

Compute the gradient ∇xF (x):
∇xF (x) =

1.3.4 - Properties of optimization problems - Smoothness and constraints - 43/57

Exercise 3: Gradient computation

Two variables

F (x) = x1 − x1x2 − x2

Compute the gradient ∇xF (x):

∇xF (x) =

[
1− x2

−1− x1

]

Quadratic loss

F (x) = ∥Hx− y∥2

Compute the gradient ∇xF (x):
∇xF (x) =

Exponential with linear function

F (x) = exp(wTx+ b)

Compute the gradient ∇xF (x):
∇xF (x) =

1.3.4 - Properties of optimization problems - Smoothness and constraints - 43/57

Exercise 3: Gradient computation
Two variables

F (x) = x1 − x1x2 − x2

Compute the gradient ∇xF (x):

∇xF (x) =

[
1− x2

−1− x1

]

Quadratic loss

F (x) = ∥Hx− y∥2

Compute the gradient ∇xF (x):

∇xF (x) = 2HT (Hx− y)

Exponential with linear function

F (x) = exp(wTx+ b)

Compute the gradient ∇xF (x):
∇xF (x) =

1.3.4 - Properties of optimization problems - Smoothness and constraints - 43/57

Exercise 3: Gradient computation
Two variables

F (x) = x1 − x1x2 − x2

Compute the gradient ∇xF (x):

∇xF (x) =

[
1− x2

−1− x1

]

Quadratic loss

F (x) = ∥Hx− y∥2

Compute the gradient ∇xF (x):

∇xF (x) = 2HT (Hx− y)

Exponential with linear function

F (x) = exp(wTx+ b)

Compute the gradient ∇xF (x):

∇xF (x) = w exp(wTx+ b)

1.3.4 - Properties of optimization problems - Smoothness and constraints - 44/57

Smoothness and convexity
Convex function lower bound

f(t)
f(x) + ∇f(x)T(t− x)

Strongly convex function lower bound
f(t)
f(x) + ∇f(x)T(t− x)
f(x) + ∇f(x)T(t− x) + μ

2 (t− x)2

Convex function (first order definition)

F a differentiable function is convex if and only if

F (y) ≥ F (x) +∇F (x)⊤(y − x), ∀y,x ∈ domF (12)

▶ A convex function is lower bounded by its local linear approximation.

▶ For C = Rn, if x if a global minimum if and only if ∇xF (x) = 0.

Strongly convex function

If F is a differentiable µ-strongly convex then

F (y) ≥ F (x) +∇F (x)⊤(y − x) +
µ

2
∥y − x∥2, ∀y,x ∈ domF

1.3.4 - Properties of optimization problems - Smoothness and constraints - 45/57

Hessian and second derivatives

Hessian of a function
The Hessian matrix H = ∇2

xF (x) of a twice differentiable function F is the matrix
whose components can be expressed as

Hi,j =
(
∇2

xF (x)
)
i,j

=
∂2F (x)

∂xi∂xj

▶ Convex function: F is convex if and only if ∇2
xF (x) is semi definite positive ∀x.

▶ If ∇2
xF (x) is strictly positive definite ∀x then F is strictly convex.

▶ if F is µ-strongly convex then ∇2
xF (x) ⪰ µI (λmin(∇2

xF (x)) ≥ µ).

Second Order Taylor approximation

The function can be approximated around x0 with

F (x) ≈ F (x0) +∇x0F (x0)
T (x− x0)︸ ︷︷ ︸

Linear term

+(x− x0)
TH(x− x0)︸ ︷︷ ︸

Quadratic term

(13)

The approximation is exact if F is a polynomial of order ≤ 2

1.3.4 - Properties of optimization problems - Smoothness and constraints - 46/57

Exercise 4: Hessian computation
Two variables

F (x) = x1 − x1x2 − x2

Compute the Hessian ∇2
xF (x), is is positive semi definite ?

∇2
xF (x) =

Quadratic loss

F (x) = ∥Hx− y∥2

Compute the Hessian ∇2
xF (x), is is positive semi definite ?

∇2
xF (x) =

Exponential with linear function

F (x) = exp(wTx+ b)

Compute the Hessian ∇2
xF (x), is is positive semi definite ?

∇2
xF (x) =

1.3.4 - Properties of optimization problems - Smoothness and constraints - 46/57

Exercise 4: Hessian computation
Two variables

F (x) = x1 − x1x2 − x2

Compute the Hessian ∇2
xF (x), is is positive semi definite ?

∇2
xF (x) =

[
0 −1
−1 0

]
, Not PSD

Quadratic loss

F (x) = ∥Hx− y∥2

Compute the Hessian ∇2
xF (x), is is positive semi definite ?

∇2
xF (x) =

Exponential with linear function

F (x) = exp(wTx+ b)

Compute the Hessian ∇2
xF (x), is is positive semi definite ?

∇2
xF (x) =

1.3.4 - Properties of optimization problems - Smoothness and constraints - 46/57

Exercise 4: Hessian computation
Two variables

F (x) = x1 − x1x2 − x2

Compute the Hessian ∇2
xF (x), is is positive semi definite ?

∇2
xF (x) =

[
0 −1
−1 0

]
, Not PSD

Quadratic loss

F (x) = ∥Hx− y∥2

Compute the Hessian ∇2
xF (x), is is positive semi definite ?

∇2
xF (x) = 2HTH, PSD

Exponential with linear function

F (x) = exp(wTx+ b)

Compute the Hessian ∇2
xF (x), is is positive semi definite ?

∇2
xF (x) =

1.3.4 - Properties of optimization problems - Smoothness and constraints - 46/57

Exercise 4: Hessian computation
Two variables

F (x) = x1 − x1x2 − x2

Compute the Hessian ∇2
xF (x), is is positive semi definite ?

∇2
xF (x) =

[
0 −1
−1 0

]
, Not PSD

Quadratic loss

F (x) = ∥Hx− y∥2

Compute the Hessian ∇2
xF (x), is is positive semi definite ?

∇2
xF (x) = 2HTH, PSD

Exponential with linear function

F (x) = exp(wTx+ b)

Compute the Hessian ∇2
xF (x), is is positive semi definite ?

∇2
xF (x) = exp(wTx+ b)wwT , PSD

1.3.4 - Properties of optimization problems - Smoothness and constraints - 47/57

Lipschitz continuity
Lipschitz continuity

Lipschitz function

Function F is called Lipschitz or Lipschitz continuous if there exists a constant
L > 0 such that ∀x,y ∈ C2

|F (x)− F (y)| ≤ L∥x− y∥ (14)

▶ A L satisfying the above constraint is called a Lipschitz constant of the function.

▶ If L < 1 the function is a contraction.

▶ Function F is gradient Lipschitz, also called L-smooth, if ∀x,y ∈ C2

∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥ (15)

▶ Lipschitz functions can be easily upper bounded,

1.3.4 - Properties of optimization problems - Smoothness and constraints - 48/57

Properties Lipschitz functions

L-smooth function

Upper bounds for Lipschitz functions

▶ If F is L-smooth, then the following inequality holds

F (x) ≤ F (y) +∇F (y)⊤(x− y) +
L

2
∥x− y∥2 (16)

the function can be upper-bounded by a quadratic function.

▶ If F is L-smooth, then the following inequality holds

∇2
xF (x) ⪯ LI (λmax(∇2

xF (x)) ≤ L) (17)

1.3.4 - Properties of optimization problems - Smoothness and constraints - 49/57

Convexity and smoothness in machine learning

Class 1

Class 2

m

Convex and smooth problems

▶ Smooth problem provides us with gradients for iterative methods.

▶ Convexity means the a solution of the problem is global.

▶ Convexity leads to several efficient algorithms.

ML approaches relying on convex problems

▶ Least square regression, Lasso.

▶ Support Vector Machines.

▶ Logistic and multinomial regression.

1.3.5 - Properties of optimization problems - Characterizing a solution - 50/57

Local and global solutions

min
x∈C

F (x)

Local solution
For the optimization problem above, a feasible point x⋆ ∈ C is a local optimum if there
exists R > 0 such that

F (x⋆) ≤ F (x) ∀x ∈ {x ∈ C, ∥x− x⋆∥ ≤ R}

▶ If the problem is convex, all local optimum are global.

▶ For non-convex function, the optimum is global only if the equation is true for all
R > 0.

1.3.5 - Properties of optimization problems - Characterizing a solution - 51/57

First order optimality condition

Convex and differentiable function
For the following convex problem

min
x∈C

F (x)

the feasible point x⋆ ∈ C is globally optimal if and only if

∇F (x⋆)⊤(y − x⋆) ≥ 0 ∀y ∈ C

▶ Any feasible direction from x⋆ is
aligned with an increasing gradient.

▶ If C = Rn, the condition is equivalent
to

∇F (x⋆) = 0

1.3.5 - Properties of optimization problems - Characterizing a solution - 52/57

Second order optimality conditions

Convex function Quad approx at optim. Saddle point function

Twice differentiable function
For the following problem

min
x∈Rn

F (x)

the feasible point x⋆ ∈ Rn is locally optimal if and only if

∇F (x⋆) = 0 and ∇2F (x⋆) ⪰ 0

▶ On general functions ∇F (x⋆) = 0 is not sufficient (saddle points).

▶ Equivalent to the first order condition on convex functions.

1.4.0 - Conclusion - - 52/57

Section
1. Introduction to optimization 2
1.1 About the course 2
1.2 Machine learning as an optimization problem 7

1.2.1 Empirical risk minimization
1.2.2 Sparsity and variable selection
1.2.3 Unsupervised learning

1.3 Properties of optimization problems 17
1.3.1 Linear Algebra recap
1.3.2 Optimization problem formulation
1.3.3 Convexity
1.3.4 Smoothness and constraints
1.3.5 Characterizing a solution

1.4 Conclusion 68

2. Smooth optimization : Gradient descent 72

3. Smooth Optimization : Quadratic problems 72

4. Non-smooth optimization : Proximal methods 72

5. Stochastic Gradient Descent 72

6. Standard formulation of constrained optimization problems 72

7. Coordinate descent 72

8. Newton and quasi-newton methods 72

9. Beyond convex optimization 72

1.4.0 - Conclusion - - 53/57

Conclusion

Machine learning and optimization

▶ Learning is an optimization problem.

▶ Design a new machine learning method ≡ design a new optimization problem.

▶ Convexity, smoothness lead to specific solver and guarantees.

Know your optimization problems

▶ If smooth and unconstrained → Gradient descent and variants.

▶ If non-smooth → proximal, projected, conditional gradients.

▶ If convex and/or constrained standard problems (LP,QP) → standard solvers.

Those are the next parts of the course.

1.4.0 - Conclusion - - 54/57

Bibliography I

References books for the whole course.

Convex Optimization [Boyd and Vandenberghe, 2004]

▶ Available freely online: https://web.stanford.edu/~boyd/cvxbook/.

▶ Perfect introduction to convex optimization (the whole book).

▶ Convex sets (Ch. 2), Convex functions (Ch 3), Convex problems (Ch. 4).

Elements of statistical learning [Friedman et al., 2001]

▶ Freely available https://web.stanford.edu/~hastie/Papers/ESLII.pdf

▶ Perfect introduction to statistical learning and machine learning.

▶ Most of them are optimization problems!

Nonlinear Programming [Bertsekas, 1997]

▶ Reference optimization book, contains also most of the course.

▶ Unconstrained optimization (Ch. 1), duality and lagrangian (Ch. 3, 4 ,5).

https://web.stanford.edu/~boyd/cvxbook/
https://web.stanford.edu/~hastie/Papers/ESLII.pdf

1.4.0 - Conclusion - - 55/57

Bibliography II

Other references

Convex analysis and monotone operator theory in Hilbert spaces
[Bauschke et al., 2011]

▶ Awesome book with lot’s of algorithms, and convergence proofs.

▶ All definitions (convexity, lower semi continuity) in specific chapters.

▶ All you need to know about proximal methods.

Numerical optimization [Nocedal and Wright, 2006]

▶ Classic introduction to numerical optimization.

▶ Very detailed unconstrained optimization, specific chapters for LP and QP.

Optimization for Machine Learning [Sra et al., 2012]

▶ Specific chapters for precise problems (non-convex, sparsity, interior points)

▶ For this course: Convex with sparsity (Ch. 2), Interior points (Ch. 3).

Linear Programming [Vanderbei et al., 2015]

▶ Reference book of LP (Simplex, interior point)

References I

[Bauschke et al., 2011] Bauschke, H. H., Combettes, P. L., et al. (2011).

Convex analysis and monotone operator theory in Hilbert spaces, volume 408.

Springer.

[Bertsekas, 1997] Bertsekas, D. P. (1997).

Nonlinear programming.

Journal of the Operational Research Society, 48(3):334–334.

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004).

Convex optimization.

Cambridge university press.

[Diamond and Boyd, 2016] Diamond, S. and Boyd, S. (2016).

Cvxpy: A python-embedded modeling language for convex optimization.

The Journal of Machine Learning Research, 17(1):2909–2913.

[Friedman et al., 2001] Friedman, J., Hastie, T., and Tibshirani, R. (2001).

The elements of statistical learning, volume 1.

Springer series in statistics New York.

References II
[Grant and Boyd, 2014] Grant, M. and Boyd, S. (2014).

CVX: Matlab software for disciplined convex programming, version 2.1.

http://cvxr.com/cvx.

[Grant et al., 2006] Grant, M., Boyd, S., and Ye, Y. (2006).

Disciplined convex programming.

Springer.

[Nocedal and Wright, 2006] Nocedal, J. and Wright, S. (2006).

Numerical optimization.

Springer Science & Business Media.

[Sra et al., 2012] Sra, S., Nowozin, S., and Wright, S. J. (2012).

Optimization for machine learning.

Mit Press.

[Vanderbei et al., 2015] Vanderbei, R. J. et al. (2015).

Linear programming.

Springer.

[Vapnik, 2013] Vapnik, V. (2013).

The nature of statistical learning theory.

Springer science & business media.

http://cvxr.com/cvx

	Introduction to optimization
	About the course
	Machine learning as an optimization problem
	Properties of optimization problems
	Conclusion

	Smooth optimization : Gradient descent
	Smooth Optimization : Quadratic problems
	Non-smooth optimization : Proximal methods
	Stochastic Gradient Descent
	Standard formulation of constrained optimization problems
	Coordinate descent
	Newton and quasi-newton methods
	Beyond convex optimization
	Appendix

