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Motivation
Unconstrained optimization problem

Definition (Unconstrained optimization problem (P))

in f
1 70

@ where f : R" — R U {+oc0} is the objective function
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Motivation
Quadratic functions
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Definition (Quadratic form)

A quadratic form reads

1
q(x) = EXTAX —b'x+c

where x e R", Ac R™" pc R" and c € R.

— What equation do stationary points satisfy?

— What condition on A do we need to guarantee the existence
and uniqueness of x*7?

— Show that minimizing g boils down to solving a linear system.
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Motivation

Taylor at order 2

Assuming f is twice differentiable, the Taylor expansion at order 2
of f at x reads:

VYheR", f(x + h) = f(x) + VF(x) h+ %hTV2f(X)h + o(||hl|?)

e Vf(x) € R" is the gradient.
o V2f(x) € R™" the Hessian matrix.

Remark: It gives a local quadratic approximation

— Show that if V2f(x) = LI then minimizing the quadratic
approximation leads to gradient descent. With what step size?
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Motivation Ridge regression and quadratic forms bury Primal-Dual

Ridge regression
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We consider problems with n samples, observations, and p features,
variables. WARNING: Using standard ML notations (X, y)

Definition (Ridge regression)
Let y € R” the n targets to predict and (x'); the n samples in RP.
Ridge regression consists in solving the following problem

1 A
min Slly = Xw — b1,|* + 5HW||27/\ >0

where w € RP is called the weights vector, b € R is the intercept
(a.k.a. bias) and the ith row of X is x'.

Remark: We have an optimization problem in dimension p + 1
Remark: Note that the intercept is not penalized with .
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Ridge regression and quadratic forms

Taking care of the intercept

Let

A 1 A
w, b= argminEHy—XW — b1,|? + EHWH2’)\ >0
w

)

y € R the mean of y and X € RP the mean of each column of X.
s U A 1 =
— Show that b= —-X w+Y.
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Ridge regression and quadratic forms

Taking care of the intercept

Let

A 1 A
w, b= argminEHy—XW — b1,|? + EHWH2’)\ >0

w,

y € R the mean of y and X € RP the mean of each column of X.
s U A 1 =
— Show that b= —-X w+Y.

Ways to deal with the intercept:

@ Option 1 (dense case): Center the target y and each column
feature and solve:

- X 2 2
min_ > Ly = Xw]? + HWII

@ Option 2 (sparse case): Add a column of 1 to X and try not
to penalize it (too much).
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Motivation Ridge regression and quadratic forms SV Primal-Dual Conjugate gradient

Ridge regression

We consider:

1 s A o
min >y = Xw|? + 5wl

@ Show that ridge regression boils down to the minimization of
a quadratic form.

Propose a closed form solution.
Show that the solution is obtained by solving a linear system.

Is the objective function strongly convex?

Assuming n < p what is the value of the constant of strong
convexity?

— cf. notebook
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SVD

Singular value decomposition (SVD)

e SVD is a factorization of a matrix (real here)

o M=UZVT where M € R™P, U € R™" ¥ € R™P,
V € RPxP

o UTU=UUT = I, (orthogonal matrix)

o VTV =WT =, (orthogonal matrix)

@ X diagonal matrix

@ > ;; are called the singular values

@ U are left-singular vectors

@ V are right-singular vectors
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SVD

Singular value decomposition (SVD)

SVD is a factorization of a matrix (real here)

U contains the eigenvectors of MM associated to the

eigenvalues 2,2,- forl1 <i<n.

V contains the eigenvectors of M M associated to the
. 2 .

eigenvalues Z,-J- for1 <i<p.

we assume here ¥ ; = 0 for min(n, p) < i < max(n, p)

SVD is particularly useful to find the rank, null-space, image
and pseudo-inverse of a matrix
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Woodbury
Matrix inversion lemma

Proposition (Matrix inversion lemma)

also known as “Woodbury matrix identity” states that:
(A+UCV) t=Al— Aty (Cr+valu)  va,

where A € R"™" (J € R™k, C e Rk*k Vv ¢ Rkxn,
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Woodbury
Matrix inversion lemma

Proposition (Matrix inversion lemma)

also known as “Woodbury matrix identity” states that:
(A+UCV) t=Al— Aty (Cr+valu)  va,

where A € R"™" (J € R™k, C e Rk*k Vv ¢ Rkxn,

Proof. Just check that (A4+UCV) times the RHS of the Woodbury
identity gives the identity matrix:

(A+ucv)[A = ATt (CH vaTtu) T va

= |+ UCVA! —(U+ UcvA tu)(Cc L+ vatu)tvat
I+ UCVA~t —uc(ct+valu)(ct+vatu)ytvat
= [+ UCVAl —UCVA™ =1
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Primal-Dual
Primal and dual implementation

We consider:

- X 2 2
min, 3 Ly — x|+ HWH

The solution is given by:

w=(XTX+ M) tXTy
Using matrix inversion lemma show that:

W= XT(XXT + M) 7!

This is a dual formulation and the matrix to invert is in R"*",
— Using the SVD of X propose an implementation.

— Can you use the SVD to confirm the primal-dual link?

— What if X is sparse, n is 1eb and p is 1e67?
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Conjugate gradient

Conjugate gradient method: Solve Ax = b

The conjugate gradient method is an iterative method to solve
linear systems with positive definite matrices (A > 0). It only
needs to know how to compute Ax (operation can be implicit).
Principle:
o lterate: x*t1 = xk — g, dk
@ The direction d* depends on all the gradients at previous
iterates (V£(x1), ..., VF(xX)).

o pX = Brd* is chosen as the vector in
span(Vf(x'), ..., VF(x¥)) which minimizes f(xk — p¥)
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Conjugate gradient

Conjugate gradient method: Solve Ax = b

Theorem (Convergence in n iterations)

The conjugate gradient algorithm finds the minimum of positive
definite quadratic form q, in at most n iterations:

1
q(x) = EXTAX —b'x+c,

and therefore solves the linear system Ax = b in in at most n
iterations.
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Conjugate gradient

Conjugate gradient method: Solve Ax = b

@ Property
o VI < k, Adk L d'
e i.e., vectors d¥ and d’ are conjugate w.rt. A
o Computation of the direction:
o d¥ =gk + ayd ! where gk = V(x*) (we correct the
gradient with a term that depends on previous iterations),
o

(g" Ad*1)
O = — 77—+
(AdF—1, dk-1)
@ Computation of optimal step size:
° k gk
g, = 8.4
(Ad*, d¥)
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Conjugate gradient: Solve Ax = b

Require: Ac R"" and b € R”
1. x0 e R", gozAxo—b
2: for k =0 to ndo

3. if g¥ =0 then

4: break

5. endif

6: if k=0 then

7: dk = go

8: else o
9: Ok = <‘§§—71f\jdk—>1>
10: dk:gk-i-()ékdk*l
1. endif

12: Bk = <51gk7:4dd2>

13 xKl = xk — g, dk
14 ghtl = Axktl — p
15: end for

16: return xk+1



Proof of Conjugate gradient

If gk =0, then xk = x* is solution of the linear system Ax = b.
For k = 1, we have d° = go, So:

(", d%
=(Ax! — b, d°)
=(Ax® — b, d% — By(Ad?, d°) (1)
— g07 d0> _ 50<Ad0, d0>
=0

by definition of Bg. This leads to
(g'.g°% = (g",d°) =0

and
(d', Ad°%) = (g', Ad®) + ag(d®, Ad®) = 0

by definition of «yp.



Proof of Conjugate gradient

One can prove the result by recurrence assuming that:

(gh,gly=0for 0<j<k
(gh,dly =0for 0<j<k
(d¥, Ad’) =0 for 0 < j < k

If gk + 0, the algorithm computes x**1 gk*1 and dk+1.



Proof of Conjugate gradient

@ By construction one has (gh*1, dk) = 0 (cf. (1)).

e Forj < k:
(g &)
:<gk+17 dJ> - <gk7 dJ>
:<gk+1 - gkv dJ>
= Bk<Adka dj>
=0 (recurrence hypothesis)
e For j < k:

(gt gy = (" &) — (gt Ty =0,

since g/ = d/ — ajd L.



Proof of Conjugate gradient

o Now: d*t1 = ghtl 4 oy 1d*. Forj < k
<dk+1,Ad‘j>
=(g"tL Ad) + a1 (dX, AdY)
—(g"" Ad) .

As g/l = g/ — B;Ad’, one obtains
o S
<gk+1’AdJ> — E<gk+17gj _gJ+1> =0 if /BJ 7é 0.
J

This implies that if 8; # 0, (d**1, Ad/) =0 for j < k.
o Furthermore one has (d**1 Ad¥) = 0.
o So (d*t1 Ad/) =0 for j < k + 1.



Proof of Conjugate gradient

@ This completes the proof for 5; # 0 and gl #0.

@ However one has that

(g%, d*) = (g", g") + arlgh, d" 1)y = |Ig"|* |

k gk
and ,Bk W%

@ So f3« can only be 0 if gk = 0, which would imply that

xk = x*.

@ Furthermore
1d*]* = llg¥|1* + alld“ M1 .

So if gk # 0 then d* # 0.



Proof of Conjugate gradient

o Consequently, if the vectors g°, g!, ..., g¥ are all non-zero,
the vectors d°, d!, ..., d¥ are also non-zero.

@ These vectors are an orthogonal basis for the dot product
(-,-) 4 and the k + 1 directions

o g% gt, ..., g¥ are an orthogonal basis for the dot product
<., >

@ These directions are therefore independent. As a consequence,
if go, gl, g”_1 are all non-zero, one has that
d"=g"=0.

@ So it converges after n iterations at the most.



Conjugate gradient
Note on warm starts and paths

In machine learning it is common to try to solve a problem that is
very similar to a previous one.

@ You train a model every day and you need just to “update”
the model

@ You look for the best hyperparameter and evaluate the
parameter on a grid of values to get a so-called “"path” of
solutions. For example on a grid of A when doing
cross-validation.

What it implies for optimization:
o Updating is natural for an iterative algorithm like CG.

Remark: Do you start with high or low regularization parameters?
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Conjugate gradient

Note: Conjugate gradient for sparse linear systems is implemented
in scipy.sparse.linalg.cg

Note: Conjugate gradient for general smooth problems is
implemented in scipy.optimize.fmin cg

Note: sklearn.linear model.Ridge has many solvers. Since
v0.18 you have 'svd’, ‘cholesky’, 'Isqr’, 'sparse_cg’, 'sag’ and ‘auto’
mode.

— more in the lecture notes.
— cf. notebook
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Conjugate gradient
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