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Unconstrained optimization problem

Definition (Unconstrained optimization problem (P))

min
x∈Rn

f (x)

where f : Rn → R ∪ {+∞} is the objective function
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Quadratic functions

Definition (Quadratic form)

A quadratic form reads

q(x) =
1

2
x⊤Ax − b⊤x + c

where x ∈ Rn, A ∈ Rn×n, b ∈ Rn and c ∈ R.

→ What equation do stationary points satisfy?
→ What condition on A do we need to guarantee the existence
and uniqueness of x∗?
→ Show that minimizing q boils down to solving a linear system.
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Taylor at order 2

Assuming f is twice differentiable, the Taylor expansion at order 2
of f at x reads:

∀h ∈ Rn, f (x + h) = f (x) +∇f (x)⊤h +
1

2
h⊤∇2f (x)h + o(∥h∥2)

∇f (x) ∈ Rn is the gradient.

∇2f (x) ∈ Rn×n the Hessian matrix.

Remark: It gives a local quadratic approximation

→ Show that if ∇2f (x) = L I then minimizing the quadratic
approximation leads to gradient descent. With what step size?
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Ridge regression

We consider problems with n samples, observations, and p features,
variables. WARNING: Using standard ML notations (X , y)

Definition (Ridge regression)

Let y ∈ Rn the n targets to predict and (x i )i the n samples in Rp.
Ridge regression consists in solving the following problem

min
w ,b

1

2
∥y − Xw − b1n∥2 +

λ

2
∥w∥2 , λ > 0

where w ∈ Rp is called the weights vector, b ∈ R is the intercept
(a.k.a. bias) and the ith row of X is x i .

Remark: We have an optimization problem in dimension p + 1

Remark: Note that the intercept is not penalized with λ.
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Taking care of the intercept

Exercise

Let

ŵ , b̂ = argmin
w ,b

1

2
∥y − Xw − b1n∥2 +

λ

2
∥w∥2 , λ > 0

y ∈ R the mean of y and X ∈ Rp the mean of each column of X .

→ Show that b̂ = −X
⊤
ŵ + y.

Ways to deal with the intercept:

Option 1 (dense case): Center the target y and each column
feature and solve:

min
w∈Rp

1

2
∥y − Xw∥2 + λ

2
∥w∥2

Option 2 (sparse case): Add a column of 1 to X and try not
to penalize it (too much).
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Ridge regression

We consider:

min
w∈Rp

1

2
∥y − Xw∥2 + λ

2
∥w∥2

Exercise

Show that ridge regression boils down to the minimization of
a quadratic form.

Propose a closed form solution.

Show that the solution is obtained by solving a linear system.

Is the objective function strongly convex?

Assuming n < p what is the value of the constant of strong
convexity?

→ cf. notebook
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Singular value decomposition (SVD)

SVD is a factorization of a matrix (real here)

M = UΣV⊤ where M ∈ Rn×p, U ∈ Rn×n, Σ ∈ Rn×p,
V ∈ Rp×p

U⊤U = UU⊤ = In (orthogonal matrix)

V⊤V = VV⊤ = Ip (orthogonal matrix)

Σ diagonal matrix

Σi ,i are called the singular values

U are left-singular vectors

V are right-singular vectors
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Singular value decomposition (SVD)

SVD is a factorization of a matrix (real here)

U contains the eigenvectors of MM⊤ associated to the
eigenvalues Σ2

i ,i for 1 ≤ i ≤ n.

V contains the eigenvectors of M⊤M associated to the
eigenvalues Σ2

i ,i for 1 ≤ i ≤ p.

we assume here Σi ,i = 0 for min(n, p) < i ≤ max(n, p)

SVD is particularly useful to find the rank, null-space, image
and pseudo-inverse of a matrix
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Matrix inversion lemma

Proposition (Matrix inversion lemma)

also known as “Woodbury matrix identity” states that:

(A+ UCV )−1 = A−1 − A−1U
(
C−1 + VA−1U

)−1
VA−1,

where A ∈ Rn×n, U ∈ Rn×k , C ∈ Rk×k , V ∈ Rk×n.

Proof. Just check that (A+UCV) times the RHS of the Woodbury
identity gives the identity matrix:

(A+ UCV )
[
A−1 − A−1U

(
C−1 + VA−1U

)−1
VA−1

]
= I + UCVA−1 − (U + UCVA−1U)(C−1 + VA−1U)−1VA−1

= I + UCVA−1 − UC (C−1 + VA−1U)(C−1 + VA−1U)−1VA−1

= I + UCVA−1 − UCVA−1 = I
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Primal and dual implementation

We consider:

min
w∈Rp

1

2
∥y − Xw∥2 + λ

2
∥w∥2

The solution is given by:

ŵ = (X⊤X + λIp)
−1X⊤y

Using matrix inversion lemma show that:

ŵ = X⊤(XX⊤ + λIn)
−1y

This is a dual formulation and the matrix to invert is in Rn×n.
→ Using the SVD of X propose an implementation.
→ Can you use the SVD to confirm the primal-dual link?
→ What if X is sparse, n is 1e5 and p is 1e6?
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Conjugate gradient method: Solve Ax = b

The conjugate gradient method is an iterative method to solve
linear systems with positive definite matrices (A ≻ 0). It only
needs to know how to compute Ax (operation can be implicit).

Principle:

Iterate: xk+1 = xk − βkd
k

The direction dk depends on all the gradients at previous
iterates (∇f (x1), . . . , ∇f (xk)).

pk = βkd
k is chosen as the vector in

span(∇f (x1), . . . ,∇f (xk)) which minimizes f (xk − pk)
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Conjugate gradient method: Solve Ax = b

Theorem (Convergence in n iterations)

The conjugate gradient algorithm finds the minimum of positive
definite quadratic form q, in at most n iterations:

q(x) =
1

2
x⊤Ax − b⊤x + c ,

and therefore solves the linear system Ax = b in in at most n
iterations.
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Conjugate gradient method: Solve Ax = b

Property

∀l < k , Adk ⊥ d l

i.e., vectors dk and d l are conjugate w.r.t. A

Computation of the direction:

dk = gk + αkd
k−1 where gk = ∇f (xk) (we correct the

gradient with a term that depends on previous iterations),

αk = − ⟨gk ,Adk−1⟩
⟨Adk−1, dk−1⟩

Computation of optimal step size:

βk =
⟨gk , dk⟩
⟨Adk , dk⟩
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Conjugate gradient: Solve Ax = b

Require: A ∈ Rn×n and b ∈ Rn

1: x0 ∈ Rn, g0 = Ax0 − b
2: for k = 0 to n do
3: if gk = 0 then
4: break
5: end if
6: if k = 0 then
7: dk = g0

8: else
9: αk = − ⟨gk ,Adk−1⟩

⟨dk−1,Adk−1⟩
10: dk = gk + αkd

k−1

11: end if
12: βk = ⟨gk ,dk ⟩

⟨dk ,Adk ⟩
13: xk+1 = xk − βkd

k

14: gk+1 = Axk+1 − b
15: end for
16: return xk+1



Proof of Conjugate gradient

If gk = 0, then xk = x∗ is solution of the linear system Ax = b.
For k = 1, we have d0 = g0, so:

⟨g1, d0⟩
=⟨Ax1 − b, d0⟩
=⟨Ax0 − b, d0⟩ − β0⟨Ad0, d0⟩
=⟨g0, d0⟩ − β0⟨Ad0, d0⟩
=0

(1)

by definition of β0. This leads to

⟨g1, g0⟩ = ⟨g1, d0⟩ = 0

and
⟨d1,Ad0⟩ = ⟨g1,Ad0⟩+ α0⟨d0,Ad0⟩ = 0

by definition of α0.



Proof of Conjugate gradient

One can prove the result by recurrence assuming that:

⟨gk , g j⟩ = 0 for 0 ≤ j < k

⟨gk , d j⟩ = 0 for 0 ≤ j < k

⟨dk ,Ad j⟩ = 0 for 0 ≤ j < k

If gk ̸= 0, the algorithm computes xk+1, gk+1 and dk+1.



Proof of Conjugate gradient

By construction one has ⟨gk+1, dk⟩ = 0 (cf. (1)).

For j < k :
⟨gk+1, d j⟩

=⟨gk+1, d j⟩ − ⟨gk , d j⟩
=⟨gk+1 − gk , d j⟩
=− βk⟨Adk , d j⟩
=0 (recurrence hypothesis)

For j ≤ k :

⟨gk+1, g j⟩ = ⟨gk+1, d j⟩ − αj⟨gk+1, d j−1⟩ = 0 ,

since g j = d j − αjd
j−1.



Proof of Conjugate gradient

Now: dk+1 = gk+1 + αk+1d
k . For j < k

⟨dk+1,Ad j⟩
=⟨gk+1,Ad j⟩+ αk+1⟨dk ,Ad j⟩
=⟨gk+1,Ad j⟩ .

As g j+1 = g j − βjAd
j , one obtains

⟨gk+1,Ad j⟩ = 1

βj
⟨gk+1, g j − g j+1⟩ = 0 if βj ̸= 0.

This implies that if βj ̸= 0, ⟨dk+1,Ad j⟩ = 0 for j < k .

Furthermore one has ⟨dk+1,Adk⟩ = 0.

So ⟨dk+1,Ad j⟩ = 0 for j < k + 1.



Proof of Conjugate gradient

This completes the proof for βj ̸= 0 and g j ̸= 0.

However one has that

⟨gk , dk⟩ = ⟨gk , gk⟩+ αk⟨gk , dk−1⟩ = ∥gk∥2 ,

and βk = ⟨gk ,dk ⟩
⟨Adk ,dk ⟩ .

So βk can only be 0 if gk = 0, which would imply that
xk = x∗.

Furthermore

∥dk∥2 = ∥gk∥2 + α2
k∥dk−1∥2 .

So if gk ̸= 0 then dk ̸= 0.



Proof of Conjugate gradient

Consequently, if the vectors g0, g1, . . . , gk are all non-zero,
the vectors d0, d1, . . . , dk are also non-zero.

These vectors are an orthogonal basis for the dot product
⟨·, ·⟩A and the k + 1 directions

g0, g1, . . . , gk are an orthogonal basis for the dot product
⟨·, ·⟩.
These directions are therefore independent. As a consequence,
if g0, g1, . . . , gn−1 are all non-zero, one has that
dn = gn = 0.

So it converges after n iterations at the most.

□
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Note on warm starts and paths

In machine learning it is common to try to solve a problem that is
very similar to a previous one.

You train a model every day and you need just to “update”
the model

You look for the best hyperparameter and evaluate the
parameter on a grid of values to get a so-called “path” of
solutions. For example on a grid of λ when doing
cross-validation.

What it implies for optimization:

Updating is natural for an iterative algorithm like CG.

Remark: Do you start with high or low regularization parameters?

22 / 24 Alexandre Gramfort Solvers for dense and sparse quadratic problems



Motivation Ridge regression and quadratic forms SVD Woodbury Primal-Dual Conjugate gradient

More

Note: Conjugate gradient for sparse linear systems is implemented
in scipy.sparse.linalg.cg

Note: Conjugate gradient for general smooth problems is
implemented in scipy.optimize.fmin cg

Note: sklearn.linear model.Ridge has many solvers. Since
v0.18 you have ’svd’, ’cholesky’, ’lsqr’, ’sparse cg’, ’sag’ and ’auto’
mode.

→ more in the lecture notes.
→ cf. notebook
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