
Optimization for data science
Non-smooth optimization: Proximal methods

R. Flamary

Master Data Science, Institut Polytechnique de Paris

October 29, 2024

Full course overview
1. Introduction to optimization for data science

1.1 ML optimization problems and linear algebra recap
1.2 Optimization problems and their properties (Convexity, smoothness)

2. Smooth optimization : Gradient descent
2.1 First order algorithms, convergence for smooth and strongly convex functions

3. Smooth Optimization : Quadratic problems
3.1 Solvers for quadratic problems, conjugate gradient
3.2 Linesearch methods

4. Non-smooth Optimization : Proximal methods
4.1 Proximal operator and proximal algorithms
4.2 Lab 1: Lasso and group Lasso

5. Stochastic Gradient Descent
5.1 SGD and variance reduction techniques
5.2 Lab 2: SGD for Logistic regression

6. Standard formulation of constrained optimization problems
6.1 LP, QP and Mixed Integer Programming

7. Coordinate descent
7.1 Algorithms and Labs

8. Newton and quasi-newton methods
8.1 Second order methods and Labs

9. Beyond convex optimization
9.1 Nonconvex reg., Frank-Wolfe, DC programming, autodiff

Current course overview
1. Introduction to optimization 4

2. Smooth optimization : Gradient descent 4

3. Smooth Optimization : Quadratic problems 4

4. Non-smooth optimization : Proximal methods 4
4.1 Non-smooth optimization and definitions 4

4.1.1 Non-smooth Machine Learning problems
4.1.2 Optimality and subgradient
4.1.3 Subgradient methods

4.2 Proximal Gradient descent 23
4.2.1 Majorization Minimization and proximal operator
4.2.2 Proximal Gradient Descent and application to Lasso
4.2.3 Accelerated Proximal Gradient Descent (APGD)

4.3 Other proximal methods and Primal Dual Algorithms 49
4.3.1 Primal-Dual Algorithms
4.3.2 Alternating Direction Method of Multipliers (ADMM)

4.4 Conclusion 53

5. Stochastic Gradient Descent 54

6. Standard formulation of constrained optimization problems 54

7. Coordinate descent 54

8. Newton and quasi-newton methods 54

9. Beyond convex optimization 54

4.1.1 - Non-smooth optimization and definitions - Non-smooth Machine Learning problems - 4/37

Nonsmooth optimization

Optimization problem

min
x∈Rn

F (x), (1)

▶ F is convex, proper, lower semi-continuous can be non smooth, non continuous.

▶ Can be constrained optimization with F (x) = f(x) + χC(x).

▶ General strategy : use the structure of F , find fast iterations.

Optimization strategies

▶ Subgradient descent: slower than GD, used for training NN.

▶ Proximal Splitting : divide an conquer strategy, can be accelerated.

▶ Projected Gradient Descent : special case of proximal splitting.

▶ Conditional Gradient : Use a linearization of F (see last course).

4.1.1 - Non-smooth optimization and definitions - Non-smooth Machine Learning problems - 5/37

Constraints VS non-smooth

Characteristic function
Let A be a subset of Rn, the characteristic functionχA of A is the function

χA(x) =

{
0, if x ∈ A

+∞, if x ̸∈ A
(2)

▶ If A is a closed set, χA is lower semi-continuous.

▶ If A is a closed convex set, χA is convex.

Equivalent optimization problems

min
x∈C

F (x) ≡ min
x∈Rn

F (x) + χC(x)

▶ Constrained OP can be reformulated as a non-smooth unconstrained OP.

▶ The new objective function is a sum of two functions (splitting algorithms).

4.1.1 - Non-smooth optimization and definitions - Non-smooth Machine Learning problems - 6/37

Semicontinuity

x0 x0
x0

Lower semi-continuous function
A function F is lower semi-continuous (l.s.c.) if for any point x0 ∈ C we have

F (x0) ≤ lim
x→x0

inf F (x) (3)

▶ Continuous functions are l.s.c. since it implies the equality above.

▶ If the function is l.s.c., there exists a local affine minorant.

▶ If the function is l.s.c. and convex it means that the sub-differential is never
empty and the minorant is global : well defined problem.

4.1.1 - Non-smooth optimization and definitions - Non-smooth Machine Learning problems - 7/37

Optimization problem in machine learning
Regularized supervised learning

min
x∈Rd

f(x) + g(x) (4)

▶ f is the data fitting term, g the regularization term.

▶ Usually f is smooth (K Lipschitz gradient).

▶ g can be non-smooth for instance Lasso regularization.

▶ This course will focus on the optimization of this type of non-smooth problem.

Data fiting examples

▶ Least square:

f(x) =
∑
i

(yi − hT
i x)

2

▶ Logistic regression:

f(x) =
∑
i

log(1+exp(−yihT
i x))

Regularization examples

▶ Ridge

g(x) =
λ

2

∑
k

x2
k

▶ Lasso

g(x) = λ
∑
k

|xk|

4.1.1 - Non-smooth optimization and definitions - Non-smooth Machine Learning problems - 8/37

Non-smooth ML problems

Linear SVM [Vapnik, 2013]

min
w

1

2
∥w∥2 + C

∑
i

max(0, 1− yiw
Thi) (5)

Lasso regression [Tibshirani, 1996]

min
w

1

2
∥Xw − y∥2 + λ∥w∥1 (6)

Multi-task learning (MTL)

▶ Low rank MTL [Argyriou et al., 2008]:

min
W

1

2
∥XW −Y∥2 + λ∥W∥∗ (7)

▶ Group Lasso MTL [Argyriou et al., 2008, Obozinski et al., 2010]:

min
W

1

2
∥XW −Y∥2 + λ

d∑
k=1

∥Wk,:∥2 (8)

4.1.1 - Non-smooth optimization and definitions - Non-smooth Machine Learning problems - 9/37

Lasso regression

x1

−2 0 2
4

x 20
2

4

y

0

2

4

Data (d= 2 + 8 noisy features)

x1

−2 0 2
4

x 2

−2
0

2
4

y

0
2
4

Regression models
Least Square
Lasso

10−2 100

λ

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

M
SE

MSE on train/test datasets
Train
Test

10−2 100

λ

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

Lasso regularization path
w1
w2

Principle [Tibshirani, 1996]

min
w

1

2
∥Xw − y∥2 + λ∥w∥1

▶ For a large enough λ the solution of the problem is sparse.

▶ Under some conditions, support of true w can be recovered [Zhao and Yu, 2006].

▶ L1 regularization creates attraction points in 0
(see optimality condition).

▶ Lasso Problem is also equivalent to

min
w,,∥w∥1≤τ

1

2
∥Xw − y∥2 (9)

▶ The geometrical constraints promotes sparse
w on the axis.

Regularization constraint
Squared error
Problem solution

4.1.2 - Non-smooth optimization and definitions - Optimality and subgradient - 10/37

Subgradients and subdifferential

x0 x1

Subgradients
F(x)
F(x0) + gT

0(x− x0)
F(x1) + gT

1(x− x1)
F(x1) + gT

2(x− x1)

x ⋆

Subdifferential and optimality
F(x)
∂F(x ⋆)
F(x ⋆) + gT

1(x− x ⋆)
F(x ⋆) + gT

2(x− x ⋆)
F(x ⋆) + 0T(x− x ⋆)

Non differentiable function

▶ For a convex function F (x), g is a subgradient of F in x0 if

F (x) ≥ F (x0) + g⊤(x− x0) (10)

▶ The set of all subgradients at x0 is the subdifferential ∂f(x0).

▶ If F is differentiable in x0 there is a unique subgradient: ∂f(x0) = {∇xF (x)}
▶ Optimality : x⋆ is a minimum of the convex function F if 0 ∈ ∂F (x⋆).

4.1.2 - Non-smooth optimization and definitions - Optimality and subgradient - 11/37

Exercise 1: Subgradients and subdifferential

−2 0 2
0

1

2
F(x) = |x|

−2 0 2
0

1

2
F(x) =max(0, x)

−2 0 2
−2

0

2

4
F(x) =max(0, x) + x

−2 0 2
0

2

4

6
F(x) = |x| + x2

Find the subdifferential ∂F (x) for the following 1D functions:

1. F (x) = |x|, at x ∈ {−1, 0, 1}
2. F (x) = max(x, 0), at x ∈ {−1, 0, 1}
3. F (x) = max(x, 0) + x, at x ∈ {−1, 0, 1}
4. F (x) = |x|+ x2, at x ∈ {−1, 0, 1}

4.1.2 - Non-smooth optimization and definitions - Optimality and subgradient - 11/37

Exercise 1: Subgradients and subdifferential

−2 0 2
0

1

2
F(x) = |x|

−2 0 2
0

1

2
F(x) =max(0, x)

−2 0 2
−2

0

2

4
F(x) =max(0, x) + x

−2 0 2
0

2

4

6
F(x) = |x| + x2

Find the subdifferential ∂F (x) for the following 1D functions:

1. F (x) = |x|, at x ∈ {−1, 0, 1}

∂F (−1) = {−1}, ∂F (0) = {g| − 1 ≤ g ≤ 1}, ∂F (1) = {1}

2. F (x) = max(x, 0), at x ∈ {−1, 0, 1}
3. F (x) = max(x, 0) + x, at x ∈ {−1, 0, 1}
4. F (x) = |x|+ x2, at x ∈ {−1, 0, 1}

4.1.2 - Non-smooth optimization and definitions - Optimality and subgradient - 11/37

Exercise 1: Subgradients and subdifferential

−2 0 2
0

1

2
F(x) = |x|

−2 0 2
0

1

2
F(x) =max(0, x)

−2 0 2
−2

0

2

4
F(x) =max(0, x) + x

−2 0 2
0

2

4

6
F(x) = |x| + x2

Find the subdifferential ∂F (x) for the following 1D functions:

1. F (x) = |x|, at x ∈ {−1, 0, 1}

∂F (−1) = {−1}, ∂F (0) = {g| − 1 ≤ g ≤ 1}, ∂F (1) = {1}

2. F (x) = max(x, 0), at x ∈ {−1, 0, 1}

∂F (−1) = {0}, ∂F (0) = {g|0 ≤ g ≤ 1}, ∂F (1) = {1}

3. F (x) = max(x, 0) + x, at x ∈ {−1, 0, 1}
4. F (x) = |x|+ x2, at x ∈ {−1, 0, 1}

4.1.2 - Non-smooth optimization and definitions - Optimality and subgradient - 11/37

Exercise 1: Subgradients and subdifferential

−2 0 2
0

1

2
F(x) = |x|

−2 0 2
0

1

2
F(x) =max(0, x)

−2 0 2
−2

0

2

4
F(x) =max(0, x) + x

−2 0 2
0

2

4

6
F(x) = |x| + x2

Find the subdifferential ∂F (x) for the following 1D functions:

1. F (x) = |x|, at x ∈ {−1, 0, 1}

∂F (−1) = {−1}, ∂F (0) = {g| − 1 ≤ g ≤ 1}, ∂F (1) = {1}

2. F (x) = max(x, 0), at x ∈ {−1, 0, 1}

∂F (−1) = {0}, ∂F (0) = {g|0 ≤ g ≤ 1}, ∂F (1) = {1}

3. F (x) = max(x, 0) + x, at x ∈ {−1, 0, 1}

∂F (−1) = {0}, ∂F (0) = {g|1 ≤ g ≤ 2}, ∂F (1) = {2}

4. F (x) = |x|+ x2, at x ∈ {−1, 0, 1}

4.1.2 - Non-smooth optimization and definitions - Optimality and subgradient - 11/37

Exercise 1: Subgradients and subdifferential

−2 0 2
0

1

2
F(x) = |x|

−2 0 2
0

1

2
F(x) =max(0, x)

−2 0 2
−2

0

2

4
F(x) =max(0, x) + x

−2 0 2
0

2

4

6
F(x) = |x| + x2

Find the subdifferential ∂F (x) for the following 1D functions:

1. F (x) = |x|, at x ∈ {−1, 0, 1}

∂F (−1) = {−1}, ∂F (0) = {g| − 1 ≤ g ≤ 1}, ∂F (1) = {1}

2. F (x) = max(x, 0), at x ∈ {−1, 0, 1}

∂F (−1) = {0}, ∂F (0) = {g|0 ≤ g ≤ 1}, ∂F (1) = {1}

3. F (x) = max(x, 0) + x, at x ∈ {−1, 0, 1}

∂F (−1) = {0}, ∂F (0) = {g|1 ≤ g ≤ 2}, ∂F (1) = {2}

4. F (x) = |x|+ x2, at x ∈ {−1, 0, 1}

∂F (−1) = {−3}, ∂F (0) = {g| − 1 ≤ g ≤ 1}, ∂F (1) = {3}

4.1.2 - Non-smooth optimization and definitions - Optimality and subgradient - 12/37

Optimal solution for the Lasso

min
w

1

2
∥Xw − y∥2 + λ∥w∥1

Optimality for Least Square (λ = 0)

X⊤(y −Xw⋆
LS) = 0

Orthogonality between the columns of X and the residuals y −Xw⋆
LS .

Optimality for Lasso (λ > 0)

0 ∈ X⊤(y −Xw⋆) + λ∂∥w⋆∥1
Which is equivalent to

−X⊤(y −Xw⋆) ∈ λ∂∥w⋆∥1
Using the subdifferential of the absolute value we can get ∀i

X⊤
:,i(y −Xw⋆) ∈


{λ} if w⋆

i > 0

[−λ, λ] if w⋆
i = 0

{−λ} if w⋆
i < 0

=

{
{λsign(w⋆

i)} if w⋆
i ̸= 0

[−λ, λ] if w⋆
i = 0

What happens when maxi |X⊤
:,iy| < λ ?

4.1.3 - Non-smooth optimization and definitions - Subgradient methods - 13/37

Subgradient methods

xk xk+ 1

Subgradient descent (iter. k)
F
∂F(xk)
d

xk+ 2

Subgradient descent (iter. k+ 1)
F
∂F(xk+ 1)
d

xk+ 3

Subgradient descent (iter. k+ 2)
F
∂F(xk+ 2)
d

Subgradient descent

1: Initialize x(0)

2: for k = 0, 1, 2, . . . do
3: g(k) ∈ ∂F (x(k))
4: x(k+1) ← x(k) − ρ(k)g(k)

5: end for

▶ No convergence guarantee to a minimum with fixed step size ρ(k) = ρ.

▶ For fixed step on L Lipschitz F reaches an ϵ = L2ρ
2

approx. solution.

▶ Convergence for a Lischitz function is O(1√
k
) with decreasing step ρ(k) = 1√

n
.

▶ Subgradient descent is slower than gradient descent.

4.1.3 - Non-smooth optimization and definitions - Subgradient methods - 14/37

Example dataset for the Lasso

−1 0 1 2
x1

−2

−1

0

1

2
x 2

Training dataset

−5

0

5

10

w1

0.0 2.5 5.0 7.5 10.0

w 2

−5.0
−2.5

0.0
2.5

5.0
10
20
30
40

Non--smooth cost function

2D Lasso optimization problem

min
w

1

2
∥Xw − y∥2 + λ∥w∥1

▶ X is a n× 2 matrix, y is a n vector with n = 50

▶ True model is w⋆ = [5, 0] and additive noise is added to the data.

▶ Least square solution is not sparse wLS = [5.32, 0.30].

▶ λ selected to have a sparse solution (only the relevant variable) with solution
wLasso = [4.064, 0].

4.1.3 - Non-smooth optimization and definitions - Subgradient methods - 15/37

Exemple of Subgradient Descent for the Lasso

0 2 4 6 8 10
w1

−4

−2

0

2

4

w
2

5

10
2050

Subgradient descent

10

15

20

25
Optimization cost

0 20 40 60 80 100
Iterations

2

4

Subgradient norm

Discussion

▶ Subgradient descent fixed step ρ(k) = ρ does not converge.

▶ Oscillation around optimal value 0 for w2.

▶ Convergence with decreasing step size ρ(k) = 1√
k
.

▶ But slow convergence in O(1√
k
).

4.1.3 - Non-smooth optimization and definitions - Subgradient methods - 15/37

Exemple of Subgradient Descent for the Lasso

3.0 3.5 4.0 4.5 5.0 5.5 6.0
w1

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3
w

2 20

50

Subgradient descent

8.8

8.9

9.0

9.1

9.2
Optimization cost

0 20 40 60 80 100
Iterations

2

4

Subgradient norm

Discussion

▶ Subgradient descent fixed step ρ(k) = ρ does not converge.

▶ Oscillation around optimal value 0 for w2.

▶ Convergence with decreasing step size ρ(k) = 1√
k
.

▶ But slow convergence in O(1√
k
).

4.1.3 - Non-smooth optimization and definitions - Subgradient methods - 15/37

Exemple of Subgradient Descent for the Lasso

0 2 4 6 8 10
w1

−4

−2

0

2

4

w
2

5
10

20
50

100500

Subgradient descent
Constant step size
Decreasing step size

10

15

20

25
Optimization cost

Constant step size
Decreasing step size

0 100 200 300 400 500
Iterations

2

4

Subgradient norm

Discussion

▶ Subgradient descent fixed step ρ(k) = ρ does not converge.

▶ Oscillation around optimal value 0 for w2.

▶ Convergence with decreasing step size ρ(k) = 1√
k
.

▶ But slow convergence in O(1√
k
).

4.1.3 - Non-smooth optimization and definitions - Subgradient methods - 15/37

Exemple of Subgradient Descent for the Lasso

3.0 3.5 4.0 4.5 5.0 5.5 6.0
w1

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3
w

2

100
200500

Subgradient descent

8.9

9.0

9.1

9.2
Optimization cost

0 100 200 300 400 500
Iterations

2

4

Subgradient norm

Discussion

▶ Subgradient descent fixed step ρ(k) = ρ does not converge.

▶ Oscillation around optimal value 0 for w2.

▶ Convergence with decreasing step size ρ(k) = 1√
k
.

▶ But slow convergence in O(1√
k
).

4.2.1 - Proximal Gradient descent - Majorization Minimization and proximal operator - 16/37

Majorization Minimization of non-smooth functions
Assumptions (separable F)

F (x) = f(x) + g(x)

▶ f is L-smooth and convex.

▶ g is convex and lower semi-continuous (can be smooth but not necessary).

Majorization Minimization of the smooth part

▶ Since f is L gradient Lipschitz F can be upper bounded around x(0) by:

F (x) ≤ f(x(0)) +∇f(x(0))⊤(x− x(0)) +
L

2
∥x− x(0)∥2 + g(x), (11)

▶ Minimizing the upper bound above is equivalent to minimize:

min
x

1

2
∥x− y∥2 + 1

L
g(x) (12)

with
y = x(0) − 1

L
∇f(x(0))

▶ The solution of (12) is the proximal operator of g.

▶ Minimizing the upper bound iteratively corresponds to the Forward Backward
Splitting or Proximal Gradient Descent algorithm.

4.2.1 - Proximal Gradient descent - Majorization Minimization and proximal operator - 16/37

Majorization Minimization of non-smooth functions
Assumptions (separable F)

F (x) = f(x) + g(x)

▶ f is L-smooth and convex.

▶ g is convex and lower semi-continuous (can be smooth but not necessary).

Majorization Minimization of the smooth part

▶ Since f is L gradient Lipschitz F can be upper bounded around x(0) by:

F (x) ≤ f(x(0)) +∇f(x(0))⊤(x− x(0)) +
L

2
∥x− x(0)∥2 + g(x), (11)

▶ Minimizing the upper bound above is equivalent to minimize:

min
x

1

2
∥x− y∥2 + 1

L
g(x) (12)

with
y = x(0) − 1

L
∇f(x(0))

▶ The solution of (12) is the proximal operator of g.

▶ Minimizing the upper bound iteratively corresponds to the Forward Backward
Splitting or Proximal Gradient Descent algorithm.

4.2.1 - Proximal Gradient descent - Majorization Minimization and proximal operator - 17/37

Proximal operator

u ⋆ x

Proximal operator for g(x) = |x|2
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

u ⋆ x

Proximal operator for g(x) = |x|
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

Definition [Bauschke et al., 2011]

The Proximity (or proximal) operator of a function g is:

proxg(x) = arg min
u∈Rn

g(u) + 1
2
∥u− x∥2.

▶ Returns a vector minimizing g but close to x in the quadratic sense.

▶ Fixed point: proxg(x) = x if x if an only if 0 ∈ ∂g(x) (i.e. x is minimizer).

▶ Non expansiveness: ∥proxg(x)− proxg(y)∥ ≤ ∥x− y∥.

Exercise 2: Proximal operator for L2 norm
Compute the proximal operator for g(x) = λ

2
∥x∥2 with λ ≥ 0

Solution : proxλ
2
∥·∥2(x) =

1
1+λ

x

4.2.1 - Proximal Gradient descent - Majorization Minimization and proximal operator - 17/37

Proximal operator

u ⋆ x

Proximal operator for g(x) = |x|2
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

u ⋆ x

Proximal operator for g(x) = |x|
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

Definition [Bauschke et al., 2011]

The Proximity (or proximal) operator of a function g is:

proxg(x) = arg min
u∈Rn

g(u) + 1
2
∥u− x∥2.

▶ Returns a vector minimizing g but close to x in the quadratic sense.

▶ Fixed point: proxg(x) = x if x if an only if 0 ∈ ∂g(x) (i.e. x is minimizer).

▶ Non expansiveness: ∥proxg(x)− proxg(y)∥ ≤ ∥x− y∥.

Exercise 2: Proximal operator for L2 norm
Compute the proximal operator for g(x) = λ

2
∥x∥2 with λ ≥ 0

Solution : proxλ
2
∥·∥2(x) =

1
1+λ

x

4.2.1 - Proximal Gradient descent - Majorization Minimization and proximal operator - 18/37

Properties of proximal operator

Exercise 3: Separable function g

If g(x) =
∑

k gk(xk) then
proxg(x) =

Exercise 4: Characteristic function of set A

If g(x) = χA(x) =

{
0, if x ∈ A

+∞, if x ̸∈ A
then

proxg(x) =

Exercise 5: Linear function
If g(x) = b⊤x+ c then

proxg(x) =

Exercise 6: Quadratic function

If g(x) = 1
2
x⊤Ax+ b⊤x then

proxg(x) =

4.2.1 - Proximal Gradient descent - Majorization Minimization and proximal operator - 18/37

Properties of proximal operator

Exercise 3: Separable function g

If g(x) =
∑

k gk(xk) then

proxg(x) = [proxg1
(x1), . . . ,proxgd

(xd)]
⊤

Exercise 4: Characteristic function of set A

If g(x) = χA(x) =

{
0, if x ∈ A

+∞, if x ̸∈ A
then

proxg(x) = projA(x) (projection operator)

Exercise 5: Linear function
If g(x) = b⊤x+ c then

proxg(x) =

Exercise 6: Quadratic function

If g(x) = 1
2
x⊤Ax+ b⊤x then

proxg(x) =

4.2.1 - Proximal Gradient descent - Majorization Minimization and proximal operator - 18/37

Properties of proximal operator

Exercise 3: Separable function g

If g(x) =
∑

k gk(xk) then

proxg(x) = [proxg1
(x1), . . . ,proxgd

(xd)]
⊤

Exercise 4: Characteristic function of set A

If g(x) = χA(x) =

{
0, if x ∈ A

+∞, if x ̸∈ A
then

proxg(x) = projA(x) (projection operator)

Exercise 5: Linear function
If g(x) = b⊤x+ c then

proxg(x) = x− b

Exercise 6: Quadratic function

If g(x) = 1
2
x⊤Ax+ b⊤x then

proxg(x) =

4.2.1 - Proximal Gradient descent - Majorization Minimization and proximal operator - 18/37

Properties of proximal operator

Exercise 3: Separable function g

If g(x) =
∑

k gk(xk) then

proxg(x) = [proxg1
(x1), . . . ,proxgd

(xd)]
⊤

Exercise 4: Characteristic function of set A

If g(x) = χA(x) =

{
0, if x ∈ A

+∞, if x ̸∈ A
then

proxg(x) = projA(x) (projection operator)

Exercise 5: Linear function
If g(x) = b⊤x+ c then

proxg(x) = x− b

Exercise 6: Quadratic function

If g(x) = 1
2
x⊤Ax+ b⊤x then

proxg(x) = (I +A)−1(x− b)

4.2.1 - Proximal Gradient descent - Majorization Minimization and proximal operator - 19/37

Proximal operator for L1 norm: Soft Thresholding

u ⋆ x0

 x> λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

u ⋆x 0

 x< −λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

u ⋆ x

 −λ≤ x≤ λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

g(x) = λ∥x∥1 = λ
∑
k

|xk|

Exercise 7: Soft Thresholding operator

L1 norm is separable so we can compute the proximal operator for each component:

1. Optimality condition for proximal operator: minu
1
2
(u− x)2 + λ|u|

2. If x > λ then

3. If x < −λ then

4. If −λ ≤ x ≤ λ then

4.2.1 - Proximal Gradient descent - Majorization Minimization and proximal operator - 19/37

Proximal operator for L1 norm: Soft Thresholding

u ⋆ x0

 x> λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

u ⋆x 0

 x< −λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

u ⋆ x

 −λ≤ x≤ λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

g(x) = λ∥x∥1 = λ
∑
k

|xk|

Exercise 7: Soft Thresholding operator

L1 norm is separable so we can compute the proximal operator for each component:

1. Optimality condition for proximal operator: minu
1
2
(u− x)2 + λ|u|

u⋆ ∈ x− λ∂|u⋆|

2. If x > λ then

3. If x < −λ then

4. If −λ ≤ x ≤ λ then

4.2.1 - Proximal Gradient descent - Majorization Minimization and proximal operator - 19/37

Proximal operator for L1 norm: Soft Thresholding

u ⋆ x0

 x> λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

u ⋆x 0

 x< −λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

u ⋆ x

 −λ≤ x≤ λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

g(x) = λ∥x∥1 = λ
∑
k

|xk|

Exercise 7: Soft Thresholding operator

L1 norm is separable so we can compute the proximal operator for each component:

1. Optimality condition for proximal operator: minu
1
2
(u− x)2 + λ|u|

u⋆ ∈ x− λ∂|u⋆|

2. If x > λ then u⋆ = x− λ (u ≤ 0 not possible)

3. If x < −λ then

4. If −λ ≤ x ≤ λ then

4.2.1 - Proximal Gradient descent - Majorization Minimization and proximal operator - 19/37

Proximal operator for L1 norm: Soft Thresholding

u ⋆ x0

 x> λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

u ⋆x 0

 x< −λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

u ⋆ x

 −λ≤ x≤ λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

g(x) = λ∥x∥1 = λ
∑
k

|xk|

Exercise 7: Soft Thresholding operator

L1 norm is separable so we can compute the proximal operator for each component:

1. Optimality condition for proximal operator: minu
1
2
(u− x)2 + λ|u|

u⋆ ∈ x− λ∂|u⋆|

2. If x > λ then u⋆ = x− λ (u ≤ 0 not possible)

3. If x < −λ then u⋆ = x+ λ(u ≥ 0 not possible)

4. If −λ ≤ x ≤ λ then

4.2.1 - Proximal Gradient descent - Majorization Minimization and proximal operator - 19/37

Proximal operator for L1 norm: Soft Thresholding

u ⋆ x0

 x> λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)
−λ

u ⋆x 0

 x< −λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)
+λ

u ⋆ x

 −λ≤ x≤ λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)
±λ

g(x) = λ∥x∥1 = λ
∑
k

|xk|

Exercise 7: Soft Thresholding operator

L1 norm is separable so we can compute the proximal operator for each component:

1. Optimality condition for proximal operator: minu
1
2
(u− x)2 + λ|u|

u⋆ ∈ x− λ∂|u⋆|

2. If x > λ then u⋆ = x− λ (u ≤ 0 not possible)

3. If x < −λ then u⋆ = x+ λ(u ≥ 0 not possible)

4. If −λ ≤ x ≤ λ then −λ ≤ x− u⋆ ≤ λ only for u⋆ = 0.

4.2.1 - Proximal Gradient descent - Majorization Minimization and proximal operator - 19/37

Proximal operator for L1 norm: Soft Thresholding

u ⋆ x0

 x> λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)
−λ

u ⋆x 0

 x< −λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)
+λ

u ⋆ x

 −λ≤ x≤ λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)
±λ

g(x) = λ∥x∥1 = λ
∑
k

|xk|

Exercise 7: Soft Thresholding operator

The proximal operator for λ∥ · ∥1 is the soft thresholding operator:

proxλ∥·∥1(x) =


x− λ if x > λ

0 if |x| ≤ λ

x+ λ if x < −λ
= sign(x)max(0, |x| − λ)

The soft thresholding operator shrinks the values of x towards 0 and promotes sparsity.

4.2.1 - Proximal Gradient descent - Majorization Minimization and proximal operator - 20/37

Examples of separable proximal operators

-2 -1 0 1 2

x

0

0.5

1

1.5

2

2.5

3

Penalty function ω(x)

ω(x) = 0

ω(x) = |x|

ω(x) = 1
2
x2

ω(x) = 1C

ω(x) = |x|
1
2

-2 -1 0 1 2

x

-3

-2

-1

0

1

2

3

Proximity operator proxω(x)

Common proximal operators

g(x) = 0 proxg(x) = x identity
g(x) = λ∥x∥22 proxg(x) =

1
1+λ

x scaling

g(x) = λ∥x∥1 proxg(x) = sign(x)max(0, |x| − λ) soft shrinkage

g(x) = λ∥x∥1/21/2 [Xu et al., 2012, Equation 11] power family

g(x) = χC(x) proxg(x) = argmin
u∈C

1
2
∥u− x∥2 orthogonal projection.

▶ Both |x| and |x|
1
2 promote sparsity (soft thresholds).

4.2.1 - Proximal Gradient descent - Majorization Minimization and proximal operator - 21/37

Proximal operator in 2D

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
g(x) = 1

2 |x|2 (λ= 1)
x1

prox1
2 | ⋅ |22(x1)

x2

prox1
2 | ⋅ |22(x2)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
g(x) = |x|2 (λ= 2)

x1

prox| ⋅ |22(x1)
x2

prox| ⋅ |22(x2)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
g(x) = |x|1 (λ= 1)

x1

prox| ⋅ |1(x1)
x2

prox| ⋅ |1(x2)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
g(x) = 2|x|1 (λ= 2)

x1

prox2| ⋅ |1(x1)
x2

prox2| ⋅ |1(x2)

4.2.2 - Proximal Gradient descent - Proximal Gradient Descent and application to Lasso - 22/37

Proximal Gradient Descent (PGD)

min
x∈Rd

F (x) = f(x) + g(x)

PGD algorithm [Combettes and Pesquet, 2011][Parikh and Boyd, 2014].

1: Initialize x(0)

2: for k = 0, 1, 2, . . . do
3: d(k) ← −∇f(x(k))
4: x(k+1) ← proxρ(k)g(x

(k) + ρ(k)d(k))
5: end for

▶ One gradient step w.r.t. f and one proximal step w.r.t. g.

▶ Also known as Forward Backward Splitting (FBS) [Combettes and Pesquet, 2011]

▶ Efficient when the proximal operator is simple to compute (closed form).

▶ When g is a characteristic function, FBS/PGD is the projected Gradient Descent.

▶ Optimal solution is a fixed point: x⋆ min of F implies that for ρ ≤ 2
L

−∇f(x⋆) ∈ ∂g(x⋆) ⇔ x⋆ = proxρg(x
⋆ − ρ∇f(x⋆)) (13)

4.2.2 - Proximal Gradient descent - Proximal Gradient Descent and application to Lasso - 23/37

Convergence of PGD

Convergenge for L-smooth f [Beck and Teboulle, 2009]

For and L-smooth function f and a convex g the PGD with step size ρ ≤ 1
L

converges
to a minimum of F with the following speed:

F (x(k))− F (x⋆) ≤ L

2k
∥x(0) − x⋆∥2

Convergence for L-smooth and µ-convex f

For and L-smooth and µ-convex function f and a convex g the PGD with step size
ρ ≤ 1

L
converges to a minimum of F with the following speed:

∥x(k) − x⋆∥ ≤
(
1− µ

L

)k
∥x(0) − x⋆∥2

Sketch of proof

∥x(k) − x⋆∥ = ∥proxρg(x
(k) − ρ∇f(x(k)))− x⋆∥

=
1
∥proxρg(x

(k) − ρ∇f(x(k)))− proxρg(x
⋆ − ρ∇f(x⋆))∥

≤
2
∥x(k) − ρ∇f(x(k))− x⋆ − ρ∇f(x⋆)∥

Next steps are similar to proof of Gradient descent convergence.
1Use fixed point property (13)
2Use non-expansiveness of proximal operator

4.2.2 - Proximal Gradient descent - Proximal Gradient Descent and application to Lasso - 24/37

Exercise 8: Solving the Lasso with PGD

min
x∈Rd

1

2
∥Hx− y∥2 + λ

∑
k

|xk|

Known as Iterative Soft Thresholding Algorithm (ISTA) [Beck and Teboulle, 2009].

1. Express the smooth function f and non-smooth functions g for the problem above

f(x) = g(x) =

2. Compute the gradient ∇f(x) and express the proximal of g.

∇f(x) = proxg(x) =

3. Express the FBS algorithm in Python/Numpy for solving the lasso with a fixed
step rho :

def l a s s o (H, y , reg , rho , n b i t e r) :

4.2.2 - Proximal Gradient descent - Proximal Gradient Descent and application to Lasso - 24/37

Exercise 8: Solving the Lasso with PGD

min
x∈Rd

1

2
∥Hx− y∥2 + λ

∑
k

|xk|

Known as Iterative Soft Thresholding Algorithm (ISTA) [Beck and Teboulle, 2009].

1. Express the smooth function f and non-smooth functions g for the problem above

f(x) =
1

2
∥Hx− y∥2 g(x) = λ

∑
k

|xk|

2. Compute the gradient ∇f(x) and express the proximal of g.

∇f(x) = proxg(x) =

3. Express the FBS algorithm in Python/Numpy for solving the lasso with a fixed
step rho :

def l a s s o (H, y , reg , rho , n b i t e r) :

4.2.2 - Proximal Gradient descent - Proximal Gradient Descent and application to Lasso - 24/37

Exercise 8: Solving the Lasso with PGD

min
x∈Rd

1

2
∥Hx− y∥2 + λ

∑
k

|xk|

Known as Iterative Soft Thresholding Algorithm (ISTA) [Beck and Teboulle, 2009].

1. Express the smooth function f and non-smooth functions g for the problem above

f(x) =
1

2
∥Hx− y∥2 g(x) = λ

∑
k

|xk|

2. Compute the gradient ∇f(x) and express the proximal of g.

∇f(x) = HT (Hx− y) proxg(x) = sign(x)max(0, |x| − λ)

3. Express the FBS algorithm in Python/Numpy for solving the lasso with a fixed
step rho :

def l a s s o (H, y , reg , rho , n b i t e r) :

4.2.2 - Proximal Gradient descent - Proximal Gradient Descent and application to Lasso - 25/37

Example: PGD/ISTA for solving the Lasso

0 2 4 6 8 10
w1

−4

−2

0

2

4
w

2

5

10

2050

Proximal Gradient Descent

Sugradient descent
Proximal Gradient Descent

10

15

20

25
Optimization cost

Sugradient descent
Proximal Gradient Descent

0 20 40 60 80 100
Iterations

0

2

4

Subgradient norm

Discussion

▶ PGD with fixed step ρ(k) = ρ is more stable than subgradient descent.

▶ No oscillation and only monotonous decrease.

▶ One variable is exactly 0 after 20 iterations.

▶ 2 regimes: support selection and then optimization of the subset of non-zeros
components (that can be strongly convex on the subset).

4.2.2 - Proximal Gradient descent - Proximal Gradient Descent and application to Lasso - 25/37

Example: PGD/ISTA for solving the Lasso

3.0 3.5 4.0 4.5 5.0 5.5 6.0
w1

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3
w

2

2050

Proximal Gradient Descent

Sugradient descent
Proximal Gradient Descent

8.9

9.0

9.1

9.2
Optimization cost

Sugradient descent
Proximal Gradient Descent

0 20 40 60 80 100
Iterations

0

2

4

Subgradient norm

Discussion

▶ PGD with fixed step ρ(k) = ρ is more stable than subgradient descent.

▶ No oscillation and only monotonous decrease.

▶ One variable is exactly 0 after 20 iterations.

▶ 2 regimes: support selection and then optimization of the subset of non-zeros
components (that can be strongly convex on the subset).

4.2.3 - Proximal Gradient descent - Accelerated Proximal Gradient Descent (APGD) - 26/37

Accelerated Proximal Gradient Descent (APGD)

PGD with Nesterov acceleration [Beck and Teboulle, 2009]

1: Initialize y(1) = x(0), t(1) = 1
2: for k = 1, 2, . . . do
3: x(k) ← proxρ(k)g(y

(k) − ρ(k)∇f(y(k)))

4: t(k+1) ← 1+
√

1+4(t(k))2

2

5: y(k+1) ← x(k) + t(k)−1

t(k+1) (x
(k) − x(k−1))

6: end for

▶ Use a similar momentum to accelerated gradient.

▶ The function might not decrease at each iteration due to the momentum.

▶ Convergence for and L-smooth function f is :

F (x(k))− F (x⋆) ≤ 2L∥x(0) − x⋆∥2

(k + 1)2

▶ Also known as Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) when
applied to the Lasso [Beck and Teboulle, 2009].

4.2.3 - Proximal Gradient descent - Accelerated Proximal Gradient Descent (APGD) - 27/37

Example: Accelerated PGD/FISTA for the Lasso

0 2 4 6 8 10
w1

−4

−2

0

2

4
w

2

5

1050

Accelerated Proximal Gradient Descent

Proximal Gradient Descent
Acc. Proximal Gradient Descent

10

15

20

25
Optimization cost
Proximal Gradient Descent
Acc. Proximal Gradient Descent

0 20 40 60 80 100
Iterations

0

2

4

Subgradient norm

Discussion

▶ Accelerated PGD with fixed step ρ(k) = ρ is faster than PGD.

▶ Inertia causes overshooting and oscillations but the algorithm converges faster.

▶ One variable is exactly 0 after 20 iterations.

▶ 2 regimes: support selection and then optimization of non-zeros components.

4.2.3 - Proximal Gradient descent - Accelerated Proximal Gradient Descent (APGD) - 27/37

Example: Accelerated PGD/FISTA for the Lasso

3.0 3.5 4.0 4.5 5.0 5.5 6.0
w1

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3
w

2

1050

Accelerated Proximal Gradient Descent

Proximal Gradient Descent
Acc. Proximal Gradient Descent

8.9

9.0

9.1

9.2
Optimization cost
Proximal Gradient Descent
Acc. Proximal Gradient Descent

0 20 40 60 80 100
Iterations

0

2

4

Subgradient norm

Discussion

▶ Accelerated PGD with fixed step ρ(k) = ρ is faster than PGD.

▶ Inertia causes overshooting and oscillations but the algorithm converges faster.

▶ One variable is exactly 0 after 20 iterations.

▶ 2 regimes: support selection and then optimization of non-zeros components.

4.3.1 - Other proximal methods and Primal Dual Algorithms - Primal-Dual Algorithms - 28/37

Chambolle-Pock Algorithm

Assumptions

min
x∈Rn

F (x) = f(Ax) + g(x)

▶ Both f and g are convex (no smoothness necessary).

▶ A is a linear operator (not needed to be square or invertible).

Chambolle-Pock Algorithm [Chambolle and Pock, 2011]

1: Initialize x(0) = x̄(0),y(0), ρ1, ρ2 > 0, 0 ≤ θ ≤ 1
2: for k = 1, 2, . . . do
3: y(k+1) ← proxρ1f

(y(k) + ρ1Ax̄(k))

4: x(k+1) ← proxρ2g
(x(k) − ρ2A

⊤y(k+1))

5: x̄(k+1) ← x(k+1) + θ(x(k+1) − x(k))
6: end for

▶ Generalization of the Douglas-Rachford splitting (with a linear operator A).

▶ θ allows to use a momentum when > 0.

▶ Interesting when the prox of f and g are efficient.

4.3.1 - Other proximal methods and Primal Dual Algorithms - Primal-Dual Algorithms - 29/37

Vu-Condat Algorithm

Assumptions

min
x

f(x) + g(x) + h(Ax)

▶ f convex and L-smooth, A is a linear operator.

▶ g and h are convex and have ”simple” proximal operators.

Vu-Conda Algorithm [Vũ, 2013, Condat, 2014]

1: Initialize x(0) = x̄(0),y(0) = ȳ(0), ρ1, ρ2 > 0, 0 ≤ θ ≤ 1
2: for k = 1, 2, . . . do
3: x(k+1) ← proxρ2g

(x̄(k) − ρ2∇f(x̄(k))− ρ2A
⊤ȳ(k))

4: x̄(k+1) ← x̄(k+1) + θ(x(k+1) − x̄(k))
5: y(k+1) ← proxρ1h∗(ȳ(k) + ρ1A(2x(k+1) − x̄(k)))

6: ȳ(k+1) ← ȳ(k+1) + θ(y(k+1) − ȳ(k))
7: end for

▶ proxρh∗(x) = x− ρproxh/ρ(x/ρ) is the proximal operator of the
Fenchel–Rockafellar conjugate of h also called convex conjugate.

▶ General formulation in parallel with h(Ax) =
∑

i hi(Aix) in [Condat, 2014].

4.3.2 - Other proximal methods and Primal Dual Algorithms - Alternating Direction Method of Multipliers (ADMM) - 30/37

Alternating Direction Method of Multipliers
(ADMM)

Optimization problem and augmented Lagrangian

min
x∈Rn,z∈Rm

f(x) + g(z) s.t. Ax+Bz = c

The augmented Lagrangian of the problem is expressed as:

Lρ(x, z,y) = f(x) + g(z) + yT (Ax+Bz− c) +
ρ

2
∥Ax+Bz− c∥2 (14)

ADMM Algorithm [Boyd et al., 2011]

1: Initialize x(0), z(0),y(0), ρ > 0
2: for k = 1, 2, . . . do
3: x(k+1) ← argminx Lρ(x, z

(k),y(k))
4: z(k+1) ← argminz Lρ(x

(k+1), z,y(k))
5: y(k+1) ← y(k) + ρ(Ax(k+1) +Bz(k+1) − c)
6: end for

▶ Updates 3 and 4 can often be expressed as proximal updates.

▶ When f or g is separable, the updates can be done in parallel.

4.3.2 - Other proximal methods and Primal Dual Algorithms - Alternating Direction Method of Multipliers (ADMM) - 31/37

Example: 2D Total Variation denoising

min
X∈Rd×d

+

∥Y −X∥2F + λ

(
d,d−1∑

i=1,j=1

|Xi,j −Xi,j+1|+
d−1,d∑

i=1,j=1

|Xi,j −Xi+1,j |

)

▶ Image Y is noisy but a clean X that has piecewise constant parts.

▶ The regularization term measure the total variation (L1 norm of the gradients) of
the image horizontally and vertically.

Exercise 9 (optional): Solve the problem

▶ For each algorithm: ADMM, Chambolle-Pock and Vu-Conda.

▶ Reformulate the problem with and without positivity constraints (recover f, g, h).

▶ Which algorithms can be used if the first term is ∥Y−H ∗X∥2F (deconvolution)?

4.4.0 - Conclusion - - 32/37

Conclusion

3.0 3.5 4.0 4.5 5.0 5.5 6.0
w1

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

w
2

1050

Non--smooth optimization algorithms

0 20 40 60 80 100
Iterations

10−7

10−5

10−3

10−1

101

Optimization cost

Subgradient descent
Subgradient descent with decreasing step size
Proximal Gradient Descent
Acc. Proximal Gradient Descent

Proximal methods [Parikh and Boyd, 2014]

▶ General strategy of proximal splitting: divide and conquer the objective function.

▶ Search for a stationary point, avoid subgradients.

▶ PGD/APGD for simple problems, ADMM or other for more complex splitting.

▶ For sparse optimization, intermediate iterates are sparse and better conditioned.

▶ Works also for non-convex problems [Attouch et al., 2010].

▶ For deep learning non-convex problems subgradient descent is often used
[Goodfellow, 2016].

Bibliography I

Convex Optimization [Boyd and Vandenberghe, 2004]

▶ Available freely online: https://web.stanford.edu/~boyd/cvxbook/.

Nonlinear Programming [Bertsekas, 1997]

▶ Reference optimization book, contains also most of the course.

▶ Unconstrained optimization (Ch. 1), duality and lagrangian (Ch. 3, 4 ,5).

Convex analysis and monotone operator theory in Hilbert spaces
[Bauschke et al., 2011]

▶ Awesome book with lot’s of algorithms, and convergence proofs.

▶ All definitions (convexity, lower semi continuity) in specific chapters.

Numerical optimization [Nocedal and Wright, 2006]

▶ Classic introduction to numerical optimization.

https://web.stanford.edu/~boyd/cvxbook/

References I

Argyriou, A., Evgeniou, T., and Pontil, M. (2008).

Convex multi-task feature learning.

Machine learning, 73:243–272.

Attouch, H., Bolte, J., Redont, P., and Soubeyran, A. (2010).

Proximal alternating minimization and projection methods for nonconvex problems: An
approach based on the kurdyka-Lojasiewicz inequality.

Mathematics of Operations Research, 35(2):438–457.

Bauschke, H. H., Combettes, P. L., et al. (2011).

Convex analysis and monotone operator theory in Hilbert spaces, volume 408.

Springer.

Beck, A. and Teboulle, M. (2009).

A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

SIAM journal on imaging sciences, 2(1):183–202.

Bertsekas, D. P. (1997).

Nonlinear programming.

Journal of the Operational Research Society, 48(3):334–334.

References II

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. (2011).

Distributed optimization and statistical learning via the alternating direction method of
multipliers.

Foundations and Trends® in Machine learning, 3(1):1–122.

Boyd, S. and Vandenberghe, L. (2004).

Convex optimization.

Cambridge university press.

Chambolle, A. and Pock, T. (2011).

A first-order primal-dual algorithm for convex problems with applications to imaging.

Journal of mathematical imaging and vision, 40(1):120–145.

Combettes, P. L. and Pesquet, J.-C. (2011).

Proximal splitting methods in signal processing.

In Fixed-point algorithms for inverse problems in science and engineering, pages 185–212.
Springer.

Condat, L. (2014).

A generic proximal algorithm for convex optimization—application to total variation
minimization.

IEEE Signal Processing Letters, 21(8):985–989.

References III

Goodfellow, I. (2016).

Deep learning.

Nocedal, J. and Wright, S. (2006).

Numerical optimization.

Springer Science & Business Media.

Obozinski, G., Taskar, B., and Jordan, M. I. (2010).

Joint covariate selection and joint subspace selection for multiple classification problems.

Statistics and Computing, 20:231–252.

Parikh, N. and Boyd, S. P. (2014).

Proximal algorithms.

Foundations and Trends in optimization, 1(3):127–239.

Tibshirani, R. (1996).

Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society: Series B (Methodological), 58(1):267–288.

Vapnik, V. (2013).

The nature of statistical learning theory.

Springer science & business media.

References IV

Vũ, B. C. (2013).

A splitting algorithm for dual monotone inclusions involving cocoercive operators.

Advances in Computational Mathematics, 38(3):667–681.

Xu, Z., Chang, X., Xu, F., and Zhang, H. (2012).

L1/2 regularization: a thresholding representation theory and a fast solver.

Neural Networks and Learning Systems, IEEE Transactions on, 23(7):1013–1027.

Zhao, P. and Yu, B. (2006).

On model selection consistency of lasso.

The Journal of Machine Learning Research, 7:2541–2563.

	Introduction to optimization
	Smooth optimization : Gradient descent
	Smooth Optimization : Quadratic problems
	Non-smooth optimization : Proximal methods
	Non-smooth optimization and definitions
	Proximal Gradient descent
	Other proximal methods and Primal Dual Algorithms
	Conclusion

	Stochastic Gradient Descent
	Standard formulation of constrained optimization problems
	Coordinate descent
	Newton and quasi-newton methods
	Beyond convex optimization

