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Nonsmooth optimization

Optimization problem

min
x∈Rn

F (x), (1)

▶ F is convex, proper, lower semi-continuous can be non smooth, non continuous.

▶ Can be constrained optimization with F (x) = f(x) + χC(x).

▶ General strategy : use the structure of F , find fast iterations.

Optimization strategies

▶ Subgradient descent: slower than GD, used for training NN.

▶ Proximal Splitting : divide an conquer strategy, can be accelerated.

▶ Projected Gradient Descent : special case of proximal splitting.

▶ Conditional Gradient : Use a linearization of F (see last course).
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Constraints VS non-smooth

Characteristic function
Let A be a subset of Rn, the characteristic functionχA of A is the function

χA(x) =

{
0, if x ∈ A

+∞, if x ̸∈ A
(2)

▶ If A is a closed set, χA is lower semi-continuous.

▶ If A is a closed convex set, χA is convex.

Equivalent optimization problems

min
x∈C

F (x) ≡ min
x∈Rn

F (x) + χC(x)

▶ Constrained OP can be reformulated as a non-smooth unconstrained OP.

▶ The new objective function is a sum of two functions (splitting algorithms).
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Semicontinuity

x0 x0
x0

Lower semi-continuous function
A function F is lower semi-continuous (l.s.c.) if for any point x0 ∈ C we have

F (x0) ≤ lim
x→x0

inf F (x) (3)

▶ Continuous functions are l.s.c. since it implies the equality above.

▶ If the function is l.s.c., there exists a local affine minorant.

▶ If the function is l.s.c. and convex it means that the sub-differential is never
empty and the minorant is global : well defined problem.
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Optimization problem in machine learning
Regularized supervised learning

min
x∈Rd

f(x) + g(x) (4)

▶ f is the data fitting term, g the regularization term.

▶ Usually f is smooth (K Lipschitz gradient).

▶ g can be non-smooth for instance Lasso regularization.

▶ This course will focus on the optimization of this type of non-smooth problem.

Data fiting examples

▶ Least square:

f(x) =
∑
i

(yi − hT
i x)

2

▶ Logistic regression:

f(x) =
∑
i

log(1+exp(−yihT
i x))

Regularization examples

▶ Ridge

g(x) =
λ

2

∑
k

x2
k

▶ Lasso

g(x) = λ
∑
k

|xk|
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Non-smooth ML problems

Linear SVM [Vapnik, 2013]

min
w

1

2
∥w∥2 + C

∑
i

max(0, 1− yiw
Thi) (5)

Lasso regression [Tibshirani, 1996]

min
w

1

2
∥Xw − y∥2 + λ∥w∥1 (6)

Multi-task learning (MTL)

▶ Low rank MTL [Argyriou et al., 2008]:

min
W

1

2
∥XW −Y∥2 + λ∥W∥∗ (7)

▶ Group Lasso MTL [Argyriou et al., 2008, Obozinski et al., 2010]:

min
W

1

2
∥XW −Y∥2 + λ

d∑
k=1

∥Wk,:∥2 (8)
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Lasso regression
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Principle [Tibshirani, 1996]

min
w

1

2
∥Xw − y∥2 + λ∥w∥1

▶ For a large enough λ the solution of the problem is sparse.

▶ Under some conditions, support of true w can be recovered [Zhao and Yu, 2006].

▶ L1 regularization creates attraction points in 0
(see optimality condition).

▶ Lasso Problem is also equivalent to

min
w,,∥w∥1≤τ

1

2
∥Xw − y∥2 (9)

▶ The geometrical constraints promotes sparse
w on the axis.

Regularization constraint
Squared error
Problem solution
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Subgradients and subdifferential

x0 x1

Subgradients
F(x)
F(x0) + gT

0(x− x0)
F(x1) + gT

1(x− x1)
F(x1) + gT

2(x− x1)

x ⋆

Subdifferential and optimality
F(x)
∂F(x ⋆ )
F(x ⋆ ) + gT

1(x− x ⋆ )
F(x ⋆ ) + gT

2(x− x ⋆ )
F(x ⋆ ) + 0T(x− x ⋆ )

Non differentiable function

▶ For a convex function F (x), g is a subgradient of F in x0 if

F (x) ≥ F (x0) + g⊤(x− x0) (10)

▶ The set of all subgradients at x0 is the subdifferential ∂f(x0).

▶ If F is differentiable in x0 there is a unique subgradient: ∂f(x0) = {∇xF (x)}
▶ Optimality : x⋆ is a minimum of the convex function F if 0 ∈ ∂F (x⋆).
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Exercise 1: Subgradients and subdifferential

−2 0 2
0

1

2
F(x) = |x|

−2 0 2
0

1

2
F(x) =max(0, x)

−2 0 2
−2

0

2

4
F(x) =max(0, x) + x

−2 0 2
0

2

4

6
F(x) = |x| + x2

Find the subdifferential ∂F (x) for the following 1D functions:

1. F (x) = |x|, at x ∈ {−1, 0, 1}
2. F (x) = max(x, 0), at x ∈ {−1, 0, 1}
3. F (x) = max(x, 0) + x, at x ∈ {−1, 0, 1}
4. F (x) = |x|+ x2, at x ∈ {−1, 0, 1}
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Optimal solution for the Lasso

min
w

1

2
∥Xw − y∥2 + λ∥w∥1

Optimality for Least Square (λ = 0)

X⊤(y −Xw⋆
LS) = 0

Orthogonality between the columns of X and the residuals y −Xw⋆
LS .

Optimality for Lasso (λ > 0)

0 ∈ X⊤(y −Xw⋆) + λ∂∥w⋆∥1
Which is equivalent to

−X⊤(y −Xw⋆) ∈ λ∂∥w⋆∥1
Using the subdifferential of the absolute value we can get ∀i

X⊤
:,i(y −Xw⋆) ∈


{λ} if w⋆

i > 0

[−λ, λ] if w⋆
i = 0

{−λ} if w⋆
i < 0

=

{
{λsign(w⋆

i )} if w⋆
i ̸= 0

[−λ, λ] if w⋆
i = 0

What happens when maxi |X⊤
:,iy| < λ ?
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Subgradient methods

xk xk+ 1

Subgradient descent (iter. k)
F
∂F(xk)
d

xk+ 2

Subgradient descent (iter. k+ 1)
F
∂F(xk+ 1)
d

xk+ 3

Subgradient descent (iter. k+ 2)
F
∂F(xk+ 2)
d

Subgradient descent

1: Initialize x(0)

2: for k = 0, 1, 2, . . . do
3: g(k) ∈ ∂F (x(k))
4: x(k+1) ← x(k) − ρ(k)g(k)

5: end for

▶ No convergence guarantee to a minimum with fixed step size ρ(k) = ρ.

▶ For fixed step on L Lipschitz F reaches an ϵ = L2ρ
2

approx. solution.

▶ Convergence for a Lischitz function is O( 1√
k
) with decreasing step ρ(k) = 1√

n
.

▶ Subgradient descent is slower than gradient descent.
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Example dataset for the Lasso
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2D Lasso optimization problem

min
w

1

2
∥Xw − y∥2 + λ∥w∥1

▶ X is a n× 2 matrix, y is a n vector with n = 50

▶ True model is w⋆ = [5, 0] and additive noise is added to the data.

▶ Least square solution is not sparse wLS = [5.32, 0.30].

▶ λ selected to have a sparse solution (only the relevant variable) with solution
wLasso = [4.064, 0].
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Exemple of Subgradient Descent for the Lasso
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▶ Subgradient descent fixed step ρ(k) = ρ does not converge.

▶ Oscillation around optimal value 0 for w2.

▶ Convergence with decreasing step size ρ(k) = 1√
k
.

▶ But slow convergence in O( 1√
k
).
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Majorization Minimization of non-smooth functions
Assumptions (separable F )

F (x) = f(x) + g(x)

▶ f is L-smooth and convex.

▶ g is convex and lower semi-continuous (can be smooth but not necessary).

Majorization Minimization of the smooth part

▶ Since f is L gradient Lipschitz F can be upper bounded around x(0) by:

F (x) ≤ f(x(0)) +∇f(x(0))⊤(x− x(0)) +
L

2
∥x− x(0)∥2 + g(x), (11)

▶ Minimizing the upper bound above is equivalent to minimize:

min
x

1

2
∥x− y∥2 + 1

L
g(x) (12)

with
y = x(0) − 1

L
∇f(x(0))

▶ The solution of (12) is the proximal operator of g.

▶ Minimizing the upper bound iteratively corresponds to the Forward Backward
Splitting or Proximal Gradient Descent algorithm.
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Proximal operator

u ⋆ x

Proximal operator for g(x) = |x|2
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

u ⋆ x

Proximal operator for g(x) = |x|
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

Definition [Bauschke et al., 2011]

The Proximity (or proximal) operator of a function g is:

proxg(x) = arg min
u∈Rn

g(u) + 1
2
∥u− x∥2.

▶ Returns a vector minimizing g but close to x in the quadratic sense.

▶ Fixed point: proxg(x) = x if x if an only if 0 ∈ ∂g(x) (i.e. x is minimizer).

▶ Non expansiveness: ∥proxg(x)− proxg(y)∥ ≤ ∥x− y∥.

Exercise 2: Proximal operator for L2 norm
Compute the proximal operator for g(x) = λ

2
∥x∥2 with λ ≥ 0

Solution : proxλ
2
∥·∥2(x) =

1
1+λ

x
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Properties of proximal operator

Exercise 3: Separable function g

If g(x) =
∑

k gk(xk) then
proxg(x) =

Exercise 4: Characteristic function of set A

If g(x) = χA(x) =

{
0, if x ∈ A

+∞, if x ̸∈ A
then

proxg(x) =

Exercise 5: Linear function
If g(x) = b⊤x+ c then

proxg(x) =

Exercise 6: Quadratic function

If g(x) = 1
2
x⊤Ax+ b⊤x then

proxg(x) =
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Exercise 6: Quadratic function

If g(x) = 1
2
x⊤Ax+ b⊤x then

proxg(x) =
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Properties of proximal operator

Exercise 3: Separable function g

If g(x) =
∑

k gk(xk) then

proxg(x) = [proxg1
(x1), . . . ,proxgd

(xd)]
⊤

Exercise 4: Characteristic function of set A

If g(x) = χA(x) =

{
0, if x ∈ A

+∞, if x ̸∈ A
then

proxg(x) = projA(x) (projection operator)

Exercise 5: Linear function
If g(x) = b⊤x+ c then

proxg(x) = x− b

Exercise 6: Quadratic function

If g(x) = 1
2
x⊤Ax+ b⊤x then

proxg(x) = (I +A)−1(x− b)
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Proximal operator for L1 norm: Soft Thresholding

u ⋆ x0

 x> λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

u ⋆x 0

 x< −λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

u ⋆ x

 −λ≤ x≤ λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)

g(x) = λ∥x∥1 = λ
∑
k

|xk|

Exercise 7: Soft Thresholding operator

L1 norm is separable so we can compute the proximal operator for each component:

1. Optimality condition for proximal operator: minu
1
2
(u− x)2 + λ|u|

2. If x > λ then

3. If x < −λ then

4. If −λ ≤ x ≤ λ then
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Proximal operator for L1 norm: Soft Thresholding
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Exercise 7: Soft Thresholding operator

L1 norm is separable so we can compute the proximal operator for each component:

1. Optimality condition for proximal operator: minu
1
2
(u− x)2 + λ|u|

u⋆ ∈ x− λ∂|u⋆|

2. If x > λ then

3. If x < −λ then

4. If −λ ≤ x ≤ λ then
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Proximal operator for L1 norm: Soft Thresholding
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Exercise 7: Soft Thresholding operator

L1 norm is separable so we can compute the proximal operator for each component:

1. Optimality condition for proximal operator: minu
1
2
(u− x)2 + λ|u|

u⋆ ∈ x− λ∂|u⋆|

2. If x > λ then u⋆ = x− λ (u ≤ 0 not possible)

3. If x < −λ then

4. If −λ ≤ x ≤ λ then
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Proximal operator for L1 norm: Soft Thresholding
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Exercise 7: Soft Thresholding operator

L1 norm is separable so we can compute the proximal operator for each component:

1. Optimality condition for proximal operator: minu
1
2
(u− x)2 + λ|u|

u⋆ ∈ x− λ∂|u⋆|

2. If x > λ then u⋆ = x− λ (u ≤ 0 not possible)

3. If x < −λ then u⋆ = x+ λ(u ≥ 0 not possible)

4. If −λ ≤ x ≤ λ then
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Proximal operator for L1 norm: Soft Thresholding

u ⋆ x0

 x> λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)
−λ
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 x< −λ
1
2 |x− u|2
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2 |x− u|2 + g(x)
+λ

u ⋆ x

 −λ≤ x≤ λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)
±λ

g(x) = λ∥x∥1 = λ
∑
k

|xk|

Exercise 7: Soft Thresholding operator

L1 norm is separable so we can compute the proximal operator for each component:

1. Optimality condition for proximal operator: minu
1
2
(u− x)2 + λ|u|

u⋆ ∈ x− λ∂|u⋆|

2. If x > λ then u⋆ = x− λ (u ≤ 0 not possible)

3. If x < −λ then u⋆ = x+ λ(u ≥ 0 not possible)

4. If −λ ≤ x ≤ λ then −λ ≤ x− u⋆ ≤ λ only for u⋆ = 0.
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Proximal operator for L1 norm: Soft Thresholding

u ⋆ x0

 x> λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)
−λ

u ⋆x 0

 x< −λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)
+λ

u ⋆ x

 −λ≤ x≤ λ
1
2 |x− u|2
g(u)
F(x) = 1

2 |x− u|2 + g(x)
±λ

g(x) = λ∥x∥1 = λ
∑
k

|xk|

Exercise 7: Soft Thresholding operator

The proximal operator for λ∥ · ∥1 is the soft thresholding operator:

proxλ∥·∥1(x) =


x− λ if x > λ

0 if |x| ≤ λ

x+ λ if x < −λ
= sign(x)max(0, |x| − λ)

The soft thresholding operator shrinks the values of x towards 0 and promotes sparsity.
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Examples of separable proximal operators

-2 -1 0 1 2

x

0

0.5

1

1.5

2

2.5

3

Penalty function ω(x)

ω(x) = 0

ω(x) = |x|

ω(x) = 1
2
x2

ω(x) = 1C

ω(x) = |x|
1
2

-2 -1 0 1 2

x

-3

-2

-1

0

1

2

3

Proximity operator proxω(x)

Common proximal operators

g(x) = 0 proxg(x) = x identity
g(x) = λ∥x∥22 proxg(x) =

1
1+λ

x scaling

g(x) = λ∥x∥1 proxg(x) = sign(x)max(0, |x| − λ) soft shrinkage

g(x) = λ∥x∥1/21/2 [Xu et al., 2012, Equation 11] power family

g(x) = χC(x) proxg(x) = argmin
u∈C

1
2
∥u− x∥2 orthogonal projection.

▶ Both |x| and |x|
1
2 promote sparsity (soft thresholds).
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Proximal operator in 2D
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prox2| ⋅ |1(x2)



4.2.2 - Proximal Gradient descent - Proximal Gradient Descent and application to Lasso - 22/37

Proximal Gradient Descent (PGD)

min
x∈Rd

F (x) = f(x) + g(x)

PGD algorithm [Combettes and Pesquet, 2011][Parikh and Boyd, 2014].

1: Initialize x(0)

2: for k = 0, 1, 2, . . . do
3: d(k) ← −∇f(x(k))
4: x(k+1) ← proxρ(k)g(x

(k) + ρ(k)d(k))
5: end for

▶ One gradient step w.r.t. f and one proximal step w.r.t. g.

▶ Also known as Forward Backward Splitting (FBS) [Combettes and Pesquet, 2011]

▶ Efficient when the proximal operator is simple to compute (closed form).

▶ When g is a characteristic function, FBS/PGD is the projected Gradient Descent.

▶ Optimal solution is a fixed point: x⋆ min of F implies that for ρ ≤ 2
L

−∇f(x⋆) ∈ ∂g(x⋆) ⇔ x⋆ = proxρg(x
⋆ − ρ∇f(x⋆)) (13)
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Convergence of PGD

Convergenge for L-smooth f [Beck and Teboulle, 2009]

For and L-smooth function f and a convex g the PGD with step size ρ ≤ 1
L

converges
to a minimum of F with the following speed:

F (x(k))− F (x⋆) ≤ L

2k
∥x(0) − x⋆∥2

Convergence for L-smooth and µ-convex f

For and L-smooth and µ-convex function f and a convex g the PGD with step size
ρ ≤ 1

L
converges to a minimum of F with the following speed:

∥x(k) − x⋆∥ ≤
(
1− µ

L

)k
∥x(0) − x⋆∥2

Sketch of proof

∥x(k) − x⋆∥ = ∥proxρg(x
(k) − ρ∇f(x(k)))− x⋆∥

=
1
∥proxρg(x

(k) − ρ∇f(x(k)))− proxρg(x
⋆ − ρ∇f(x⋆))∥

≤
2
∥x(k) − ρ∇f(x(k))− x⋆ − ρ∇f(x⋆)∥

Next steps are similar to proof of Gradient descent convergence.
1Use fixed point property (13)
2Use non-expansiveness of proximal operator
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Exercise 8: Solving the Lasso with PGD

min
x∈Rd

1

2
∥Hx− y∥2 + λ

∑
k

|xk|

Known as Iterative Soft Thresholding Algorithm (ISTA) [Beck and Teboulle, 2009].

1. Express the smooth function f and non-smooth functions g for the problem above

f(x) = g(x) =

2. Compute the gradient ∇f(x) and express the proximal of g.

∇f(x) = proxg(x) =

3. Express the FBS algorithm in Python/Numpy for solving the lasso with a fixed
step rho :

def l a s s o (H, y , reg , rho , n b i t e r ) :
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2. Compute the gradient ∇f(x) and express the proximal of g.
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Exercise 8: Solving the Lasso with PGD

min
x∈Rd

1

2
∥Hx− y∥2 + λ

∑
k

|xk|

Known as Iterative Soft Thresholding Algorithm (ISTA) [Beck and Teboulle, 2009].

1. Express the smooth function f and non-smooth functions g for the problem above

f(x) =
1

2
∥Hx− y∥2 g(x) = λ

∑
k

|xk|

2. Compute the gradient ∇f(x) and express the proximal of g.

∇f(x) = HT (Hx− y) proxg(x) = sign(x)max(0, |x| − λ)

3. Express the FBS algorithm in Python/Numpy for solving the lasso with a fixed
step rho :

def l a s s o (H, y , reg , rho , n b i t e r ) :
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Example: PGD/ISTA for solving the Lasso
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Discussion

▶ PGD with fixed step ρ(k) = ρ is more stable than subgradient descent.

▶ No oscillation and only monotonous decrease.

▶ One variable is exactly 0 after 20 iterations.

▶ 2 regimes: support selection and then optimization of the subset of non-zeros
components (that can be strongly convex on the subset).
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Example: PGD/ISTA for solving the Lasso
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Accelerated Proximal Gradient Descent (APGD)

PGD with Nesterov acceleration [Beck and Teboulle, 2009]

1: Initialize y(1) = x(0), t(1) = 1
2: for k = 1, 2, . . . do
3: x(k) ← proxρ(k)g(y

(k) − ρ(k)∇f(y(k)))

4: t(k+1) ← 1+
√

1+4(t(k))2

2

5: y(k+1) ← x(k) + t(k)−1

t(k+1) (x
(k) − x(k−1))

6: end for

▶ Use a similar momentum to accelerated gradient.

▶ The function might not decrease at each iteration due to the momentum.

▶ Convergence for and L-smooth function f is :

F (x(k))− F (x⋆) ≤ 2L∥x(0) − x⋆∥2

(k + 1)2

▶ Also known as Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) when
applied to the Lasso [Beck and Teboulle, 2009].
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Example: Accelerated PGD/FISTA for the Lasso
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▶ 2 regimes: support selection and then optimization of non-zeros components.
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Example: Accelerated PGD/FISTA for the Lasso
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Chambolle-Pock Algorithm

Assumptions

min
x∈Rn

F (x) = f(Ax) + g(x)

▶ Both f and g are convex (no smoothness necessary).

▶ A is a linear operator (not needed to be square or invertible).

Chambolle-Pock Algorithm [Chambolle and Pock, 2011]

1: Initialize x(0) = x̄(0),y(0), ρ1, ρ2 > 0, 0 ≤ θ ≤ 1
2: for k = 1, 2, . . . do
3: y(k+1) ← proxρ1f

(y(k) + ρ1Ax̄(k))

4: x(k+1) ← proxρ2g
(x(k) − ρ2A

⊤y(k+1))

5: x̄(k+1) ← x(k+1) + θ(x(k+1) − x(k))
6: end for

▶ Generalization of the Douglas-Rachford splitting (with a linear operator A).

▶ θ allows to use a momentum when > 0.

▶ Interesting when the prox of f and g are efficient.
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Vu-Condat Algorithm

Assumptions

min
x

f(x) + g(x) + h(Ax)

▶ f convex and L-smooth, A is a linear operator.

▶ g and h are convex and have ”simple” proximal operators.

Vu-Conda Algorithm [Vũ, 2013, Condat, 2014]

1: Initialize x(0) = x̄(0),y(0) = ȳ(0), ρ1, ρ2 > 0, 0 ≤ θ ≤ 1
2: for k = 1, 2, . . . do
3: x(k+1) ← proxρ2g

(x̄(k) − ρ2∇f(x̄(k))− ρ2A
⊤ȳ(k))

4: x̄(k+1) ← x̄(k+1) + θ(x(k+1) − x̄(k))
5: y(k+1) ← proxρ1h∗(ȳ(k) + ρ1A(2x(k+1) − x̄(k)))

6: ȳ(k+1) ← ȳ(k+1) + θ(y(k+1) − ȳ(k))
7: end for

▶ proxρh∗(x) = x− ρproxh/ρ(x/ρ) is the proximal operator of the
Fenchel–Rockafellar conjugate of h also called convex conjugate.

▶ General formulation in parallel with h(Ax) =
∑

i hi(Aix) in [Condat, 2014].
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Alternating Direction Method of Multipliers
(ADMM)

Optimization problem and augmented Lagrangian

min
x∈Rn,z∈Rm

f(x) + g(z) s.t. Ax+Bz = c

The augmented Lagrangian of the problem is expressed as:

Lρ(x, z,y) = f(x) + g(z) + yT (Ax+Bz− c) +
ρ

2
∥Ax+Bz− c∥2 (14)

ADMM Algorithm [Boyd et al., 2011]

1: Initialize x(0), z(0),y(0), ρ > 0
2: for k = 1, 2, . . . do
3: x(k+1) ← argminx Lρ(x, z

(k),y(k))
4: z(k+1) ← argminz Lρ(x

(k+1), z,y(k))
5: y(k+1) ← y(k) + ρ(Ax(k+1) +Bz(k+1) − c)
6: end for

▶ Updates 3 and 4 can often be expressed as proximal updates.

▶ When f or g is separable, the updates can be done in parallel.
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Example: 2D Total Variation denoising

min
X∈Rd×d

+

∥Y −X∥2F + λ

(
d,d−1∑

i=1,j=1

|Xi,j −Xi,j+1|+
d−1,d∑

i=1,j=1

|Xi,j −Xi+1,j |

)

▶ Image Y is noisy but a clean X that has piecewise constant parts.

▶ The regularization term measure the total variation (L1 norm of the gradients) of
the image horizontally and vertically.

Exercise 9 (optional): Solve the problem

▶ For each algorithm: ADMM, Chambolle-Pock and Vu-Conda.

▶ Reformulate the problem with and without positivity constraints (recover f, g, h).

▶ Which algorithms can be used if the first term is ∥Y−H ∗X∥2F (deconvolution)?
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Conclusion
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Proximal methods [Parikh and Boyd, 2014]

▶ General strategy of proximal splitting: divide and conquer the objective function.

▶ Search for a stationary point, avoid subgradients.

▶ PGD/APGD for simple problems, ADMM or other for more complex splitting.

▶ For sparse optimization, intermediate iterates are sparse and better conditioned.

▶ Works also for non-convex problems [Attouch et al., 2010].

▶ For deep learning non-convex problems subgradient descent is often used
[Goodfellow, 2016].
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