
Optimization for data science
Stochastic Gradient Descent

R. Flamary

Master Data Science, Institut Polytechnique de Paris

October 29, 2024

Full course overview
1. Introduction to optimization for data science

1.1 ML optimization problems and linear algebra recap
1.2 Optimization problems and their properties (Convexity, smoothness)

2. Smooth optimization : Gradient descent
2.1 First order algorithms, convergence for smooth and strongly convex functions

3. Smooth Optimization : Quadratic problems
3.1 Solvers for quadratic problems, conjugate gradient
3.2 Linesearch methods

4. Non-smooth Optimization : Proximal methods
4.1 Proximal operator and proximal algorithms
4.2 Lab 1: Lasso and group Lasso

5. Stochastic Gradient Descent
5.1 SGD and variance reduction techniques
5.2 Lab 2: SGD for Logistic regression

6. Standard formulation of constrained optimization problems
6.1 LP, QP and Mixed Integer Programming

7. Coordinate descent
7.1 Algorithms and Labs

8. Newton and quasi-newton methods
8.1 Second order methods and Labs

9. Beyond convex optimization
9.1 Nonconvex reg., Frank-Wolfe, DC programming, autodiff

Current course overview
1. Introduction to optimization 4

2. Smooth optimization : Gradient descent 4

3. Smooth Optimization : Quadratic problems 4

4. Non-smooth optimization : Proximal methods 4

5. Stochastic Gradient Descent 4
5.1 Machine learning a.k.a minimizing a finite sum 4
5.2 SGD: Optimizing with gradient approximations 5

5.2.1 SGD with fixed and decreasing step size
5.2.2 SGD with averaging

5.3 Stochastic Variance Reduction methods 27
5.3.1 Controling the variance with covariates
5.3.2 Stochastic Variance reduced method gradient (SVRG)
5.3.3 Memory methods : SAG and SAGA

5.4 Conclusion 39
5.4.1 SGD in machine learning
5.4.2 Comparison of methods

6. Standard formulation of constrained optimization problems 42

7. Coordinate descent 42

8. Newton and quasi-newton methods 42

9. Beyond convex optimization 42

5.1.0 - Machine learning a.k.a minimizing a finite sum - - 4/34

Machine learning a.k.a minimizing a finite sum

Optimization problem

min
w∈Rd

F (w) =
1

n

n∑
i=1

fi(w) (1)

▶ Standard ML problem (supervised or unsupervised learning).

▶ d is the number of parameter in the model, n the number of training samples.

▶ Can handle both ERM and regularized learning:

▶ Empirical Risk Minimization : fi(w) = (yi − xT
i w)2

▶ Regularization : fi(w) = (yi − xT
i w)2 + λ

2
∥w∥2

▶ Gradient of F is: ∇wF (w) = 1
n

∑n
i=1∇wfi(w)

Large sale optimization

▶ Both n and d can be very large.

▶ Computation of F and ∇F is O(nd).

▶ Dataset may not fit in memory.

⇒ Approximate the gradient: Stochastic Gradient Descent.

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 5/34

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) algorithm

1: Initialize x(0)

2: for k = 0, 1, 2, . . . do
3: i(k) ← randomly pick an index i ∈ {1, . . . , n}
4: d(k) ← −∇xfi(k)(x(k))
5: x(k+1) ← x(k) + ρ(k)d(k)

6: end for

▶ d(k) ∈ Rn is an approximation of the full
gradient on one sample.

▶ Iteration complexity is O(d) VS O(nd) for GD.
−0.5 0.0 0.5 1.0 1.5 2.0

−2.50

−2.25

−2.00

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50
Full and individual gradients

Current point
−∇F(x)
−∇fi(x)

▶ With very small step size, SGD (over an epoch) is very close to GD.

▶ Step size strategies:

▶ Fixed step size : ρ(k) = ρ
▶ Decreasing step size : ρ(k) = 1√

k

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 6/34

Convergence of SGD with fixed step size (1)

Assumptions

▶ F is µ-strongly convex.

▶ F = 1
n

∑
i fi has Expected Bounded Stochastic Gradients (EBSG):

Ei∼ 1
n
[∥∇fi(x(k))∥2] ≤ B2, ∀k (2)

Convergence of fixed step SGD on strongly convex functions

If F is µ-strongly convex and F = 1
n

∑
i fi has Expected Bounded Stochastic

Gradients, then for ρ < 1
µ
we have for fixed step SGD:

E[∥x(k) − x⋆∥2] ≤ (1− ρµ)k∥x(0) − x⋆∥2 + ρ

µ
B2 (3)

▶ Fast (exponential) convergence of the first term.

▶ Bias term ρ
µ
B2 proportional to the step size!

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 7/34

Proof of convergence of fixed step SGD (1)

∥x(k+1) − x⋆∥2 = ∥x(k) − ρ∇fi(k)(x
(k))− x⋆∥2

≤ ∥x(k) − x⋆∥2 − 2ρ∇f⊤
i(k)(x

(k) − x⋆) + ρ2∥∇fi(k)(x
(k))∥2

By taking the expectation w.r.t. i(k) we get:

Ei(k)∼ 1
n
[∥x(k+1) − x⋆∥2] ≤

1
∥x(k) − x⋆∥2 − 2ρ∇F (x(k))⊤(x(k) − x⋆) + ρ2B2

≤
2
(1− ρµ)∥x(k) − x⋆∥2 + ρ2B2

Now taking the total expectation w.r.t. all steps

E[∥x(k+1) − x⋆∥2] ≤ (1− ρµ)E[∥x(k) − x⋆∥2] + ρ2B2

≤ (1− ρµ)k∥x(0) − x⋆∥2 + ρ2B2
k∑

i=0

(1− ρµ)i

≤ (1− ρµ)k∥x(0) − x⋆∥2 + ρ2B2 1− (1− ρµ)i+1

1− (1− ρµ)

≤ (1− ρµ)k∥x(0) − x⋆∥2 + ρ

ν
B2

1Unbiased gradient ∇F (x(k)) = Ei∼ 1
n
∇fi(x

(k)) and Ei∼ 1
n
[∥∇fi(x

(k))∥2] ≤ B2

2Strong convexity ∇F (x(k))⊤(x(k) − x⋆) ≥ µ∥x(k) − x⋆∥2

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 8/34

Assumptions for convergence of SGD

Expected Bounded Stochastic Gradients (EBSG)

Ei∼ 1
n
[∥∇fi(x(k))∥2] ≤ B2, ∀k

Exercise 1: Linear regression

1. fi(w) = (yi − xT
i w)2.

2. Compute ∇fi(w)
∇fi(w) =

3. Compute E[∥∇fi(w)∥2]

E[∥∇fi(w)∥2] =

4. What is maxw E[∥∇fi(w)∥2]?
5. Is Quadratic loss EBSG?

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 8/34

Assumptions for convergence of SGD

Expected Bounded Stochastic Gradients (EBSG)

Ei∼ 1
n
[∥∇fi(x(k))∥2] ≤ B2, ∀k

Exercise 1: Linear regression

1. fi(w) = (yi − xT
i w)2.

2. Compute ∇fi(w)
∇fi(w) = −2(yi − xT

i w)xi

3. Compute E[∥∇fi(w)∥2]

E[∥∇fi(w)∥2] =

4. What is maxw E[∥∇fi(w)∥2]?
5. Is Quadratic loss EBSG?

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 8/34

Assumptions for convergence of SGD
Expected Bounded Stochastic Gradients (EBSG)

Ei∼ 1
n
[∥∇fi(x(k))∥2] ≤ B2, ∀k

Exercise 1: Linear regression

1. fi(w) = (yi − xT
i w)2.

2. Compute ∇fi(w)
∇fi(w) = −2(yi − xT

i w)xi

3. Compute E[∥∇fi(w)∥2]

E[∥∇fi(w)∥2] = 4

n

∑
i

∥xi(yi − x⊤w)∥2

=
4

n

∑
i

∥xi∥2(yi − x⊤
i w)2

=
4

n
∥y −Xw∥2diag(∥xi∥)−1

4. What is maxw E[∥∇fi(w)∥2]?
5. Is Quadratic loss EBSG?

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 9/34

Convergence of SGD with fixed step size (2)

Assumptions

▶ F is µ-strongly convex.

▶ F = 1
n

∑
i fi and each fi is Li-smooth.

▶ Definition: Gradient noise
σ2 = Ei∼ 1

n
[∥∇fi(x⋆)∥2] (4)

Convergence of fixed step SGD on strongly convex and smooth functions

If F is µ-strongly convex and F = 1
n

∑
i fi with ∀i, fi is Li-smooth and

Lmax = maxi Li , then for ρ ≤ 1
2Lmax

we have for fixed step SGD:

E[∥x(k) − x⋆∥2] ≤ (1− ρµ)k∥x(0) − x⋆∥2 + 2ρ

µ
σ2 (5)

▶ Fast (exponential) convergence of the first term.

▶ Bias term ρ
µ
σ2 proportional to the step size but now only on solution.

▶ Homework exercise on moodle, proof available in [Gower et al., 2019].

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 10/34

Example optimization problem

1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

−1.0

−0.5

0.0

0.5

1.0
y

Training dataset

w

0.0 0.5 1.0 1.5 2.0
b−4

−2
0

2
4
6
8
10

Cost function

1D Logistic regression

min
w,b

n∑
i=1

log(1 + exp(−yi(wxi + b))) + λ
w2

2

▶ Linear prediction model : f(x) = wx+ b

▶ Training data (xi, yi) : (1,−1), (2,−1), (3, 1), (4, 1).
▶ Problem solution for λ = 1 : x∗ = [w⋆, b⋆] = [0.96,−2.40]
▶ Initialization : x(0) = [1,−0.5].

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 11/34

Example of constant step SGD

0.00 0.25 0.50 0.75 1.00 1.25 1.50
w

−4

−3

−2

−1

0

1
b

520100
500
1000

Stochastic gradient descent (fixed step)
GD
SGD

Iterations
Iterations

10−5

10−3

10−1

101
Optimization cost

GD
SGD

0 2000 4000 6000 8000
Grad. computations

10−5

10−3

10−1

101

Discussion

▶ SGD VS GD (as a function of iterations and nb of grad. computation).

▶ Fixed step size : ρ(k) = 0.01 and ρ(k) = 0.02

▶ One GD iter ≡ 4 SGD iter (since n = 4).

▶ Complexity O(d) per iteration but not convergence (bias).

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 11/34

Example of constant step SGD

0.00 0.25 0.50 0.75 1.00 1.25 1.50
w

−4

−3

−2

−1

0

1
b

520
100

500
1000

Stochastic gradient descent (fixed step)
GD
SGD

Iterations
Iterations

10−5

10−3

10−1

101
Optimization cost

GD
SGD

0 2000 4000 6000 8000
Grad. computations

10−5

10−3

10−1

101

Discussion

▶ SGD VS GD (as a function of iterations and nb of grad. computation).

▶ Fixed step size : ρ(k) = 0.01 and ρ(k) = 0.02

▶ One GD iter ≡ 4 SGD iter (since n = 4).

▶ Complexity O(d) per iteration but not convergence (bias).

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 12/34

Exercise 2: Calculating smoothness constants (1)

Ridge regression

F (w) =
1

n

n∑
i=1

(yi − xT
i w)2 + λ∥w∥2

Compute the smoothness constant Li and Lmax.

1. fi(w) = (yi − xT
i w)2 + λ∥w∥2.

2. Compute ∇fi(w).

∇fi(w) = − 2(yi − xT
i w)xi + 2λw

3. Compute ∇2fi(w).
∇2fi(w) = 2xix

⊤
i + 2λI

4. Find Li.
∥∇2fi(w)∥ =

5. Fin Lmax =.

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 12/34

Exercise 2: Calculating smoothness constants (1)

Ridge regression

F (w) =
1

n

n∑
i=1

(yi − xT
i w)2 + λ∥w∥2

Compute the smoothness constant Li and Lmax.

1. fi(w) = (yi − xT
i w)2 + λ∥w∥2.

2. Compute ∇fi(w).

∇fi(w) = − 2(yi − xT
i w)xi + 2λw

3. Compute ∇2fi(w).
∇2fi(w) = 2xix

⊤
i + 2λI

4. Find Li.
∥∇2fi(w)∥ =

5. Fin Lmax =.

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 12/34

Exercise 2: Calculating smoothness constants (1)

Ridge regression

F (w) =
1

n

n∑
i=1

(yi − xT
i w)2 + λ∥w∥2

Compute the smoothness constant Li and Lmax.

1. fi(w) = (yi − xT
i w)2 + λ∥w∥2.

2. Compute ∇fi(w).

∇fi(w) = − 2(yi − xT
i w)xi + 2λw

3. Compute ∇2fi(w).
∇2fi(w) = 2xix

⊤
i + 2λI

4. Find Li.
∥∇2fi(w)∥ =

5. Fin Lmax =.

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 12/34

Exercise 2: Calculating smoothness constants (1)

Ridge regression

F (w) =
1

n

n∑
i=1

(yi − xT
i w)2 + λ∥w∥2

Compute the smoothness constant Li and Lmax.

1. fi(w) = (yi − xT
i w)2 + λ∥w∥2.

2. Compute ∇fi(w).

∇fi(w) = − 2(yi − xT
i w)xi + 2λw

3. Compute ∇2fi(w).
∇2fi(w) = 2xix

⊤
i + 2λI

4. Find Li.
∥∇2fi(w)∥ =≤ 2∥xi∥2 + 2λ = Li

5. Fin Lmax = 2(λ+maxi ∥xi∥2).

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 13/34

Exercise 3: Calculating smoothness constants (2)

Logistic regression

F (w) =
1

n

n∑
i=1

log(1 + exp(−yix⊤
i w)) + λ∥w∥2

Compute the smoothness constant Li and Lmax.

1. fi(w) = log(1 + exp(−yix⊤
i w)) + λ∥w∥2.

2. Compute ∇fi(w) =

3. Compute ∇2fi(w)

∇2fi(w) =
xix

⊤
i exp(yix

⊤
i w)

(1 + exp(yix⊤
i w))2

+ 2λI

4. Find Li.

∇2fi(w) ⪯ ∥xi∥2

4
I+ 2λI = LiI (hint et/(1 + et)2 ≤ 1

4
)

5. Find Lmax = maxi ∥xi∥2
4

+ 2λ.

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 13/34

Exercise 3: Calculating smoothness constants (2)

Logistic regression

F (w) =
1

n

n∑
i=1

log(1 + exp(−yix⊤
i w)) + λ∥w∥2

Compute the smoothness constant Li and Lmax.

1. fi(w) = log(1 + exp(−yix⊤
i w)) + λ∥w∥2.

2. Compute ∇fi(w) = −yixi

1+exp(yix
⊤
i w)

+ 2λw

3. Compute ∇2fi(w)

∇2fi(w) =
xix

⊤
i exp(yix

⊤
i w)

(1 + exp(yix⊤
i w))2

+ 2λI

4. Find Li.

∇2fi(w) ⪯ ∥xi∥2

4
I+ 2λI = LiI (hint et/(1 + et)2 ≤ 1

4
)

5. Find Lmax = maxi ∥xi∥2
4

+ 2λ.

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 13/34

Exercise 3: Calculating smoothness constants (2)

Logistic regression

F (w) =
1

n

n∑
i=1

log(1 + exp(−yix⊤
i w)) + λ∥w∥2

Compute the smoothness constant Li and Lmax.

1. fi(w) = log(1 + exp(−yix⊤
i w)) + λ∥w∥2.

2. Compute ∇fi(w) = −yixi

1+exp(yix
⊤
i w)

+ 2λw

3. Compute ∇2fi(w)

∇2fi(w) =
xix

⊤
i exp(yix

⊤
i w)

(1 + exp(yix⊤
i w))2

+ 2λI

4. Find Li.

∇2fi(w) ⪯ ∥xi∥2

4
I+ 2λI = LiI (hint et/(1 + et)2 ≤ 1

4
)

5. Find Lmax = maxi ∥xi∥2
4

+ 2λ.

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 14/34

SGD with decreasing step size

Convergence for strongly convex and smooth function with ρ(k) = O(1
k
)

If F = 1
n

∑
i fi µ-strongly convex with ∀i, fi is Li-smooth with K = Lmax

µ
and the

step size is

ρ(k) =

{
1

2Lmax
if k ≤ 4⌈K⌉

2k+1
(k+1)2µ

else

for k > 4⌈K⌉ we have for SGD:

E[∥x(k) − x⋆∥2] ≤ 8σ2

µ2k
+

16⌈K⌉2∥x(0) − x⋆∥2

e2k2
(6)

Convergence for smooth function with ρ(k) = O(1√
k
)

If F = 1
n

∑
i fi with ∀i, fi is Li-smooth and ρ(k) = ρ√

1+k
and ρ ≤ 1

4Lmax
we have for

SGD:

E[F (x̄(k))− F (x⋆)] ≤ ∥x
(0) − x⋆∥2 + 2ρ(F (x̄(0))− F (x⋆))

2ρ
√
k − 1

+
2σ2(log(k) + 1)√

k − 1
(7)

with x̄(k) = 1
k+1

∑k
i=0 x

(i).

See details in [Garrigos and Gower, 2023]

5.2.1 - SGD: Optimizing with gradient approximations - SGD with fixed and decreasing step size - 15/34

Example of decreasing step SGD

0.00 0.25 0.50 0.75 1.00 1.25 1.50
w

−4

−3

−2

−1

0

1
b

5
20

100
500

1000

Stochastic gradient descent (dec. step)
GD
SGD
SGD dec.

Iterations
Iterations

10−5

10−3

10−1

101
Optimization cost

GD
SGD
SGD dec.

0 2000 4000 6000 8000
Grad. computations

10−5

10−3

10−1

101

Discussion

▶ Decreasing step size : ρ(k) = 1√
k

▶ Slow convergence but less noise for large number of iterations.

▶ Complexity O(d) per iteration.

5.2.2 - SGD: Optimizing with gradient approximations - SGD with averaging - 16/34

SGD with averaging (SGDA)

SGD with late start averaging

1: Initialize x(0) set s0 ≥ 0
2: for k = 0, 1, 2, . . . do
3: i(k) ← randomly pick an index i ∈ {1, . . . , n}
4: d(k) ← −∇xfi(k)(x(k))
5: x(k+1) ← x(k) + ρ(k)d(k)

6: if k ≥ s0 then
7: x̄(k) = 1

k−s0

∑k
i=s0

x(i)

8: else
9: x̄(k) = x(k)

10: end if
11: end for

▶ Principle : Averaging of the iterates after a certain number of steps to
compensate oscillations around optimality.

▶ Convergence of the average x̄(k) to the optimality in O(1√
k
) for Li smooth and

convex functions fi [Polyak and Juditsky, 1992].

▶ Convergence remains slow because averaging slows changes.

5.2.2 - SGD: Optimizing with gradient approximations - SGD with averaging - 17/34

Example of SGD with averaging

0.00 0.25 0.50 0.75 1.00 1.25 1.50
w

−4

−3

−2

−1

0

1
b

520
100

500
1000

4000

Stochastic gradient descent (Polyak Avg.)
GD
SGD dec.
SGD (Average)

Iterations
Iterations

10−5

10−3

10−1

101
Optimization cost

GD
SGD dec.
SGD (Average)

0 2000 4000 6000 8000
Grad. computations

10−5

10−3

10−1

101

Discussion

▶ Decreasing step size : ρ(k) = 1√
k

▶ Slow convergence of x̄(k) but less noise that SGD.

▶ Complexity O(d) per iteration (how is that implemented?).

5.2.2 - SGD: Optimizing with gradient approximations - SGD with averaging - 18/34

Convergence of SGD VS GD
Iteration complexity for a linear model is with d parameters and n samples and k
iterations.

On strongly convex and smooth functions

Method Cost 1 iter. Convergence Nb. iter. Running time

GD nd exp(−k/κ) κ log(1/ϵ) ndκ log(1/ϵ)
SGD (O(1

k
) step) d κ/k κ/ϵ dκ/ϵ

▶ Conditioning of the problem is κ = Lmax
µ

.

▶ SGD more efficient when n≫ 1
ϵ log(ϵ)

is very large.

On smooth functions

Method Cost 1 iter. Convergence Nb. iter. Running time

GD nd 1/k 1/ϵ dn/ϵ
AGD nd 1/k2 1/

√
ϵ dn/

√
ϵ

SGDA (O(1√
k
) step) d 1/

√
k 1/ϵ2 d/ϵ2

▶ SGD more efficient than GD when n≫ 1
ϵ
is very large.

Limits of SGD

▶ Convergence remains slow in practice because of gradient noise.

▶ Better estimation of the gradient can be done with variance reduction methods.

5.3.0 - Stochastic Variance Reduction methods - - 19/34

Stochastic Variance Reduced methods

Principle

▶ Keep iteration cost of SVG (compute only one gradient ∇fi(k)).

▶ Use and estimate g(k) ≈ ∇F (x(k)) with low variance updated (for cheap) at
each step.

▶ Use g(k) to compute the descent update.

x(k+1) = x(k) − ρ(k)g(k)

What we want for g(k)

▶ Unbiased estimator of the gradient ∇F (x(k)):

Ei∼ 1
n
[g(k)] = ∇F (x(k))

▶ Low variance VAR[g(k)] = E[∥g(k) −∇F (x(k))∥2] for faster convergence.
▶ Convergence in L2 to 0 at solution (no need for decreasing step size):

lim
x(k)→x⋆

E[∥g(k)∥2] = 0

5.3.1 - Stochastic Variance Reduction methods - Controling the variance with covariates - 20/34

Controling the variance with covariates

Controlled Stochastic Reformulation

▶ Covariate function : zi is a function of the sample i, ∀i ∈ 1, . . . , n.

▶ Reformulation of original problem:

1

n

n∑
i=1

fi(x) = Ei∼ 1
n
[fi(x)] = Ei∼ 1

n
[fi(x)− zi(x) + zi(x)]

= Ei∼ 1
n
[fi(x)− zi(x) + Ei∼ 1

n
[zi(x)]]

▶ Equivalent optimization problem but one can use the gradient estimation for
sample i:

gi = ∇fi(x)−∇zi(x) + Ei∼ 1
n
[∇zi(x)]

▶ How to choose zi to control the variance?

Covariates
Let x and z two random variables, we say that x and z are covariates if:

cov(x, z) = E[(x− E[x])(z − E[z])] ≥ 0

5.3.1 - Stochastic Variance Reduction methods - Controling the variance with covariates - 21/34

Covariates and variance reduction

Variance reduced estimate
When x and z are covariates one can define the variance reduced estimate:

xz = x− z + E[z]

Exercise 4: Properties of variance reduction

1. Compute E[xz] = E[x]
2. Compute VAR[xz] = E[(xz − E[xz])

2]

VAR[xz] = E[(xz − E[xz])
2]

= E[(x− E[x]− (z − E[z]))2]

= E[(x− E[x])2] + E[(z − E[z])2]− 2E[(x− E[x])(z − E[z])]
= VAR[x] + VAR[z]− 2cov(x, z)

3. Under which condition is VAR[xz] ≤ VAR[x]?

cov(x, z) ≥ 1

2
VAR[z]

the larger the correlation the better the variance reduction.

5.3.1 - Stochastic Variance Reduction methods - Controling the variance with covariates - 21/34

Covariates and variance reduction

Variance reduced estimate
When x and z are covariates one can define the variance reduced estimate:

xz = x− z + E[z]

Exercise 4: Properties of variance reduction

1. Compute E[xz] = E[x]
2. Compute VAR[xz] = E[(xz − E[xz])

2]

VAR[xz] = E[(xz − E[xz])
2]

= E[(x− E[x]− (z − E[z]))2]

= E[(x− E[x])2] + E[(z − E[z])2]− 2E[(x− E[x])(z − E[z])]
= VAR[x] + VAR[z]− 2cov(x, z)

3. Under which condition is VAR[xz] ≤ VAR[x]?

cov(x, z) ≥ 1

2
VAR[z]

the larger the correlation the better the variance reduction.

5.3.1 - Stochastic Variance Reduction methods - Controling the variance with covariates - 21/34

Covariates and variance reduction

Variance reduced estimate
When x and z are covariates one can define the variance reduced estimate:

xz = x− z + E[z]

Exercise 4: Properties of variance reduction

1. Compute E[xz] = E[x]
2. Compute VAR[xz] = E[(xz − E[xz])

2]

VAR[xz] = E[(xz − E[xz])
2]

= E[(x− E[x]− (z − E[z]))2]

= E[(x− E[x])2] + E[(z − E[z])2]− 2E[(x− E[x])(z − E[z])]
= VAR[x] + VAR[z]− 2cov(x, z)

3. Under which condition is VAR[xz] ≤ VAR[x]?

cov(x, z) ≥ 1

2
VAR[z]

the larger the correlation the better the variance reduction.

5.3.2 - Stochastic Variance Reduction methods - Stochastic Variance reduced method gradient (SVRG) - 22/34

Stochastic Variance Reduced Gradient (SVRG)

Principle of SVRG [Johnson and Zhang, 2013]

▶ Use covariate function zi that is a linear approximation of fi:

zi(x) = fi(x̃) +∇fi(x̃)⊤(x− x̃) (8)

where x̃ is a reference (anchor) point.

▶ The gradient gi with the variance reduced estimate:

gi = ∇fi(x)−∇fi(x̃) +∇F (x̃)

▶ The variance of the gradient estimation is:

VAR[gi] = = E[∥∇fi(x)−∇fi(x̃)−∇F (x) +∇F (x̃)∥2]

≤
3
2E[∥∇fi(x)−∇F (x)∥2] + 2E[∥∇fi(x̃)−∇F (x̃)∥2]

≤ 2(L2
max + L2)∥x− x̃∥2

Smaller variance when x is close to x̃.

3Use ∥x+ y∥2 ≤ 2∥x∥2 + 2∥y∥2

5.3.2 - Stochastic Variance Reduction methods - Stochastic Variance reduced method gradient (SVRG) - 23/34

Algorithm of SVRG

Algorithm of SVRG [Johnson and Zhang, 2013]

1: Initialize x(0), x̃(0) = x(0)

2: for k = 0, 1, 2, . . . do
3: x(0) ← x̃(k)

4: for j = 0, . . . ,M − 1 do
5: i← randomly pick an index i ∈ {1, . . . , n}
6: g = ∇fi(x(j))−∇fi(x̃(k)) +∇F (x̃(k))
7: x(j+1) = x(j) − ρg
8: end for
9: x̃(k+1) = x(M)

10: end for

0.0 0.5 1.0 1.5

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

SVRG gradients

x(j)

̄x
d SVRG
−∇F(̄x)
−∇fi(x)
−∇fi(̄x)

▶ The gradient g is the variance reduced estimate of the gradient.

▶ The anchor point x̃(k) is updated every M steps.

▶ The full gradient ∇F (x̃(k)) is computed when anchor point is updated.

▶ Need to choose the parameter M .

▶ Convergence in O(e−Ck) for strongly convex and smooth functions and M
sufficiently large (same as GD because full gradient...).

5.3.2 - Stochastic Variance Reduction methods - Stochastic Variance reduced method gradient (SVRG) - 24/34

Example of SVRG

0.00 0.25 0.50 0.75 1.00 1.25 1.50
w

−4

−3

−2

−1

0

1
b

520
100

500
1000

4000

Stochastic variance reduced gradient (SVRG)
GD
SGD dec.
SVRG

Iterations
Iterations

10−5

10−2

Optimization cost
GD
SGD dec.
SVRG

0 2000 4000 6000 8000
Grad. computations

10−5

10−2

Discussion

▶ Fixed step : ρ(k) = 0.02 (same as GD)

▶ M = 500 = 125 ∗ n
▶ Convergence in O(e−Ck) similar to GD for strongly convex and smooth functions.

▶ Similar speed as GD in term of gradient computation (full gradient every M iter.).

5.3.3 - Stochastic Variance Reduction methods - Memory methods : SAG and SAGA - 25/34

Stochastic Average Gradient (SAG)

Stochastic Average Gradient (SAG) [Roux et al., 2012]

1: Initialize x(0),gi = ∇fi(x(0)) ∀i
2: for k = 0, 1, 2, . . . do
3: i(k) ← randomly pick an index i ∈ {1, . . . , n}
4: gi(k) ← ∇xfi(k)(x)
5: d(k) ← − 1

n

∑
i gi

6: x(k+1) ← x(k) + ρd(k)

7: end for
▶ Keep in memory all previous computed

gradients gi, update only for sample i(k).

▶ Iteration is O(d), memory is O(nd).

▶ Convergence speed [Roux et al., 2012]

E[F (x̄(k))−F (x⋆)] =

{
O(1

k
) for F convex

O(e−Ck) for F strongly convex

0.0 0.5 1.0 1.5

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

SAG gradients

x(k)

x(k− 1)

−d(k) SAG
−d(k− 1) SAG
−∇fi(x(k))
−∇fi(x(k− 1))

Exercise 5: Efficient implementation of SAG

▶ How to implement (reformulate) line 5 to avoid O(n) complexity?

▶ For a linear model with fi(x) = li(a
⊤
i x), do we weed to store all gradients gi?

5.3.3 - Stochastic Variance Reduction methods - Memory methods : SAG and SAGA - 26/34

Example of Stochastic Average Gradient (SAG)

0.00 0.25 0.50 0.75 1.00 1.25 1.50
w

−4

−3

−2

−1

0

1
b

520
100

500
1000

4000

Stochastic Average Gradient (SAG)
GD
SGD dec.
SAG

Iterations
Iterations

10−5

10−2

Optimization cost
GD
SGD dec.
SAG

0 2000 4000 6000 8000
Grad. computations

10−5

10−2

Discussion

▶ Constant step size : ρ(k) = 0.02

▶ Fast convergence because the problem is strongly convex..

▶ One GD iter ≡ 4 SGD iter (since n = 4).

▶ SAG complexity O(d) per iteration (but O(nd) in memory).

5.3.3 - Stochastic Variance Reduction methods - Memory methods : SAG and SAGA - 27/34

SAGA: Stochastic Average Gradient Accelerated

SAGA [Defazio et al., 2014]

1: Initialize x(0),gi = ∇fi(x(0)) ∀i
2: for k = 0, 1, 2, . . . do
3: i(k) ← randomly pick an index i ∈ {1, . . . , n}
4: d(k) ← −

(
∇xfi(k)(x(k))− gi(k) + 1

n

∑
i gi

)
5: gi(k) ← ∇xfi(k)(x(k))
6: x(k+1) ← x(k) + ρd(k)

7: x(k+1) ← proxρh(x
(k+1))

8: end for
▶ Minimizes the following problem:

min
x

F (x) + h(x) =
1

n

∑
i

fi(x) + h(x)

▶ SAGA is a variant of SAG that can handle proximal operators.

▶ Convergence speed is same as SAG but better constant [Defazio et al., 2014]

E[F (x̄(k))− F (x⋆)] =

{
O(1

k
) for F convex

O(e−Ck) for F strongly convex

5.3.3 - Stochastic Variance Reduction methods - Memory methods : SAG and SAGA - 28/34

Example of SAGA

0.00 0.25 0.50 0.75 1.00 1.25 1.50
w

−4

−3

−2

−1

0

1
b

5
20

100

5001000

Stochastic Average Gradient (SAGA)
GD
SGD dec.
SAGA

Iterations
Iterations

10−12

10−7

10−2

Optimization cost
GD
SGD dec.
SAGA

0 2000 4000 6000 8000
Grad. computations

10−12

10−7

10−2

Discussion

▶ Constant step size : ρ(k) = 0.02

▶ Fast convergence because the problem is strongly convex..

▶ One GD iter ≡ 4 SGD iter (since n = 4).

▶ SAGA complexity O(d) per iteration (but O(n) in memory for linear models).

5.4.1 - Conclusion - SGD in machine learning - 29/34

SGD in machine learning

Large scale optimization [Bottou, 2010, Bottou et al., 2018]

▶ Used for training linear and non-linear models on very large datasets.

▶ State of the art algorithm for linear SVM, logistic regression, least square.

▶ Classification (SVM,Logistic) : sklearn.linear model.SGDClassifier.

▶ Regression (least square, huber) : sklearn.linear model.SGDRegressor.

Efficient implementation

▶ Minibatches (compute stochastic gradient on multiple samples).

▶ Sparse implementation for sparse data.

▶ Parallel implementation on CPU/GPU.

▶ Early stopping can be used as regularization.

5.4.1 - Conclusion - SGD in machine learning - 30/34

SGD in deep learning

Training Neural Networks with SGD

▶ Usually use fixed step or scheduling of the step decrease.

▶ Use early stopping as regularization (but not always : double descent).

▶ Works very well on continuous, nonconvex problems but not very well understood.

▶ Several momentum averaging and adaptive step size strategies:

▶ Momentum and Accelerated gradients [Nesterov, 1983]
▶ RMSPROP [Tieleman and Hinton, 2012].
▶ Adaptive gradient step ADAGRAD [Duchi et al., 2011].
▶ Adaptive Moment estimation ADAM [Kingma and Ba, 2014].

5.4.2 - Conclusion - Comparison of methods - 31/34

Complexity of GD methods
▶ Iteration complexity for a linear model is with d parameters and n samples.

▶ Conditioning of the problem is κ = L
µ

or κ = Lmax
µ

for SGD.

On strongly convex and smooth functions

Method 1 iter. Convergence Nb. iter. Running time

GD nd exp(−k/κ) κ log(1/ϵ) ndκ log(1/ϵ)
SGD (O(1

k
) step) d κ/k κ/ϵ dκ/ϵ

SAG(A)/SVRG d 1/k (n+ κ) log(1/ϵ) d(n+ κ) log(1/ϵ)

On smooth functions

Method Cost 1 iter. Convergence Nb. iter. Running time

GD nd 1/k 1/ϵ dn/ϵ
AGD nd 1/k2 1/

√
ϵ dn/

√
ϵ

SGDA (O(1√
k
) step) d 1/

√
k 1/ϵ2 d/ϵ2

SAG(A)/SVRG d
√
n/k

√
n/ϵ d

√
n/ϵ

▶ SGD and variance reduction methods are more efficient for large n.

▶ SAGA only needs smoothness params but require to store gradients.

▶ SVRG is O(d) in memory but require full regular full gradienst (+ param M).

▶ Accelerated version of SAGA and SVRG are also available [Lin et al., 2018].

References I

Bottou, L. (2010).

Large-scale machine learning with stochastic gradient descent.

In Proceedings of COMPSTAT’2010, pages 177–186. Springer.

Bottou, L., Curtis, F. E., and Nocedal, J. (2018).

Optimization methods for large-scale machine learning.

SIAM review, 60(2):223–311.

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014).

Saga: A fast incremental gradient method with support for non-strongly convex
composite objectives.

In Advances in neural information processing systems, pages 1646–1654.

Duchi, J., Hazan, E., and Singer, Y. (2011).

Adaptive subgradient methods for online learning and stochastic optimization.

Journal of machine learning research, 12(Jul):2121–2159.

Garrigos, G. and Gower, R. M. (2023).

Handbook of convergence theorems for (stochastic) gradient methods.

arXiv preprint arXiv:2301.11235.

References II

Gower, R. M., Loizou, N., Qian, X., Sailanbayev, A., Shulgin, E., and Richtárik, P.
(2019).

Sgd: General analysis and improved rates.

In International conference on machine learning, pages 5200–5209. PMLR.

Johnson, R. and Zhang, T. (2013).

Accelerating stochastic gradient descent using predictive variance reduction.

In Advances in neural information processing systems, pages 315–323.

Kingma, D. P. and Ba, J. (2014).

Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.

Lin, H., Mairal, J., and Harchaoui, Z. (2018).

Catalyst acceleration for first-order convex optimization: from theory to practice.

Journal of Machine Learning Research, 18(212):1–54.

Nesterov, Y. E. (1983).

A method for solving the convex programming problem with convergence rate o (1/kˆ
2).

In Dokl. akad. nauk Sssr, volume 269, pages 543–547.

References III

Polyak, B. T. and Juditsky, A. B. (1992).

Acceleration of stochastic approximation by averaging.

SIAM journal on control and optimization, 30(4):838–855.

Roux, N. L., Schmidt, M., and Bach, F. R. (2012).

A stochastic gradient method with an exponential convergence rate for finite training
sets.

In Advances in neural information processing systems, pages 2663–2671.

Tieleman, T. and Hinton, G. (2012).

Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude.

COURSERA: Neural networks for machine learning, 4(2):26–31.

	Introduction to optimization
	Smooth optimization : Gradient descent
	Smooth Optimization : Quadratic problems
	Non-smooth optimization : Proximal methods
	Stochastic Gradient Descent
	Machine learning a.k.a minimizing a finite sum
	SGD: Optimizing with gradient approximations
	Stochastic Variance Reduction methods
	Conclusion

	Standard formulation of constrained optimization problems
	Coordinate descent
	Newton and quasi-newton methods
	Beyond convex optimization

