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Why coordinate descent for datascience?

So far you have seen first order method:
o gradient descent
@ proximal gradient descent
@ accelerated gradient descent
You'll also see with me
@ Newton methods
@ quasi-Newton methods

Coordinate descent (CD) has received a lot of attention in

ML /stats over the last 10 years. It's state-of-the-art techniques on
a number of learning problems, as CD applies in this settings (not
as general as gradient descent). It's what R GLMNET package and
Scikit-Learn Lasso / Elastic-Net / LinearSVC estimators use.
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Coordinate wise optimization

We work in finite dimension R” (think n parameters to optimize)
Coordinate descent is extremely simple
Idea: minimize one coordinate at a time (keeping the other fixed)

Question: Given convex, differentiable f : R” — R, if we are at a
point x such that f(x) is minimized along each coordinate axis,
have we found a global minimizer?

i.e., does f(x + dU;) > f(x) Vd € R, Vi = f(x) = min, f(z)?

where U; = (0,...,1,...,0) € R" is the ith canonical basis vector.
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Coordinate wise optimization

f(x +dU;) > f(x),¥d € R implies that

of
o X =0

which implies

Vi(x) = <a(zfl)(x),,ai{n)(x)> =0

OK for f smooth and convex !
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Exact coordinate descent
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Exact coordinate descent
Exact coordinate descent

Objective: minegrn f(x)
Initialisation: Xg = (Xol ,...,x(g")).
Algorithm:

Choose | = (k mod n)+1 (cyclic rule)

{ ,EJ)rl = argmin,cp f(x; (1) ...,x,((l_l),z,x,((lﬂ),...,xlgn)) if i =1

) _ ) if i |

Xk+1 k

Note: The order of cycle through coordinates is arbitrary, can use
any permutation of 1,2,...,n.

Note: We just have to solve 1D optimization problems but a lot of
them...
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Exact coordinate descent

Example

Coordinate descent on a 2D problem
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Exact coordinate descent
Example: Linear regression

Let f(x) = 3|ly — Ax||?, where y € R™, A € R™*" is the design
matrix with columns Ay, ..., A, (one per feature)

Consider minimizing over x(), with all xU), j # i fixed:

0=V,f(x) = Al (Ax —y) = AT (Ax\) + A_;x=) — y)

i.e., we take:
- »
MO A_ixt=0)
A,.TA;
Repeat these update by cycling over coordinates
— notebook
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Exact coordinate descent
Example: Linear regression
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Note that doing:

. Ty — A_.x(=1)
) Ay — ALY

is equivalent to:

A,Tr

A,-TA,-

where r = y — Ax is the current residual. If current r is available

the cost of an update is O(m). Updating r is also O(m) so full
pass/epoch on coordinates is O(mn) as for gradient descent.

NOPENGIN
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Exact coordinate descent

Convergence of exact coordinate descent

Proposition (Warga (1963))
Assume that

e f is continuously differentiable
e f is strictly convex

@ there exists x, € arg minyecx f(x)

then the exact coordinate descent method converges to x.
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Exact coordinate descent
Counter-example: convex nonsmooth

What if f is convex and non-smooth?

Alexandre Gramfort - Inria Coordinate descent



Exact coordinate descent

Counter-example: smooth nonconvex

What is f is smooth and non-convex? (Example due to Powell)

FxD), x(2), (3)) =
_(X(l)X(Z) _'_ X(2)X(3) + X(3)X(1)) + Z?:l max(O’ ‘X(’)| — ]_)2

13/36 Alexandre Gramfort - Inria Coordinate descent



Exact coordinate descent
Adaboost
yj = label

h; = weak classifier
Minimise the exponential loss:

f(x) = Zexp(—yjthx).
j=1

Algorithm:

@ Select the variable k1 such that ix11 = argmax; |V;f(xk)|
(greedy rule a.k.a. Gauss-Southwell rule, requires to compute
the full gradient at each iteration)

@ Perform exact coordinate descent along coordinate k1

If y; € {—1,1} and h; € {—1,0,1}": closed form formulas
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Coordinate gradient descent
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Coordinate gradient descent

Motivation

@ A 1D optimisation problem to solve at each iteration:
This may be expensive

@ We may solve it approximately since we've got plenty of
iterations left

@ We will do one single gradient step in the 1D problem
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Coordinate gradient descent
Coordinate gradient descent

Parameters: v1,...,7% >0

Algorithm:
Choose ix41 € {1,...,n}

XIEI:)I = X/SI:) —7iVif(x) i i =ik
Al =p i
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Coordinate gradient descent
Coordinate gradient descent

Parameters: v1,...,7% >0

Algorithm:
Choose ixy1 € {1,...,n}

X=X if 7 i
Choice of v: coordinate-wise Lipschitz constant i.e. Lipschitz
constant of
8ix: X,' — R
hs f(x+ Uih) = F(x®) 0 xU7D x0) g 0D ()
We will denote L; = L(Vg; ) this Lipschitz constant.
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scent Coordinate gradient descent Proximal coordinate descent Applications to ML estir

gence speed

Assume f is convex; Vf is Lipschitz continuous; Vi, v; = Li

Proposition (Beck and Tetruashvili (2013))
Ifix11 = (k mod n) + 1, then

R*(x0)
k+8/n

F(xkr1) — F(x) < Almax(1 + n3L2 /L200)

where R?(x0) = maxyyex{[[x =yl : f(y) < f(x) < f(x0)},
Linax = max; L; and Ly, = min; L;.

Note: n® can be prohibitive in high dimension. Due to

pathological cases of the cyclic rule this bound is very very
pessimistic (cf. linear regression).
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Coordinate gradient descent

Convergence speed with randomization

Assume f is convex; Vf is Lipschitz continuous; Vi, v; = Li

Proposition (Nesterov (2012))

If ix4+1 Is randomly generated, independently of iy, ..., ik and
Vie{l,...,n}, Pliky1 = i) = L, then

Elf (1) — O] < 2 (1= ) (F0) = () + 5 1% — ol

where ||x||7 = 37y Lilx(]I3.

Note: As the algorithm is now stochastic the bounds are given in
expectation.
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Coordinate gradient descent
Comparison with gradient descent

The iteration complexity of the gradient descent method is

Flosen) = F(x) < 5pp 33 = ol

To get an e-solution (i.e., such that f(xx) — f(x.) <€), we need

at most L(Zf) %« — xo|3 iterations.

while for coordinate descent we need (omitting randomization)

€

n ((1 _ %)(f(xo) —f(x)) + %Hx* - xollf)

iterations.
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Coordinate gradient descent
Comparison with gradient descent

How do the cost of iterations compare?

Let C the cost of one GD iteration and ¢ the cost of one CD
iteration.

Back to least square: C is the cost of computing
Vf(x) = AT(Ax — b) which means C = O(nnz(A)) or
C = O(mn) for a dense matrix.

We have for CD, V,f(x) = U AT (Ax — b) and with smart residual
updates ¢ = O(nnz(A))/n or C = O(m) for a dense matrix. So

c~C/n
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Coordinate gradient descent
Comparison with gradient descent

Let's recall number of iterations for CD:

g((l - %)(f(xo) — (%)) + %Hx* - XOHi)

o f(x0) — f(x:) <
f(x0) — F(x) < L5 %0 — X*Hz

o L(VF) = Amax(A TA) and L; = a/ a; with a; = AU;. We
always have L; < L(Vf) and it may happen that
Li = O(L(VT)/n).

@ So in the quadratic case, Ccp < Cgp and we may have
CCD = O(CGD/H).

@ Explains the results in the notebook...

(—on — x:||3 and it may happen that
(
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Proximal coordinate descent
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Proximal coordinate descent
CD for composite separable problem?

Let us consider:
F()=f)+ > a(x?)
i=1

with
e f convex, differentiable
@ each gj convex

The non-smooth part is here separable.
Question: Does

F(x + dU;) > F(x) ¥d € R, ¥i = F(x) = min F(z)
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Proximal coordinate descent
CD for composite separable problem?

Fly) = FO) 2 V) Ty = %) + (&) — gi(x7)
i=1
>3 [V —<0) + (g/0) - gi(x)]
i=1

>0
>0

This suggests that it should work . ..
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Proximal coordinate descent
Proximal coordinate descent

Parameters: v1,...,v, >0

Algorithm:
Choose ixy1 € {1,...,n}

{X/Ei+)1 = ProxX,, g (XIEi) - ’}/;V,'f(Xk)> if i = Ik+1

(= if i # iy

prox, .(y) = arg minyern g(x) + 3llx - Y||,2y—1

prox,, ,.(y) = arg minycr gi(x) + %V,(X —y)

— proximal operators for g(x) = A|x|, g(x) = A||x||3 and
g(x) = Ijp 3(x).
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Proximal coordinate descent
Convergence speed

We want to minimize F = f 4 g.

Assume f and g are convex; Vf is Lipschitz continuous;

Vi, vi = L%

Proposition (Richtarik and Taka¢ (2014))

If ix+1 Is randomly generated, independently of iy, ..., ik and
Vie{1,...,n}, Pliky1 = i) = L, then

n

E[F(xk+1)—F(x)] <

< = (= 2FGo)—F () +5 Ik —ol?)

Note: One obtain the same rate as for non-composite objectives.
— cf. Proof in lecture notes.
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Applications to ML estimators

Table of Contents

e Applications to ML estimators

28 /36 Alexandre Gramfort - Inria Coordinate descent



Applications to ML estimators

Regression and classification under sparsity constraints

n

in F(x) = min f (x()
;glllgn (x) )[2;1@ (x) + ;g,(x )
o Lasso: £(x) = blly — Ax|* and g(x) = xlls = ¥, <)
@ /1 log. reg.: f(x) = log(exp(—y ® Ax) + 1) and g(x) = ||x|1
where © is the elementwise product (Hadamard product).
o Box-constrained regression f(x) = 3|y — Ax||? s.t. [|x[|oc < &
o Non-negative least squares (NNLS) f(x) = ||y — Ax|? s.t.
X(i) Z 0

Note: Generally the regularizer is separable non-smooth and the
data fit is smooth.
— write full algorithm for NNLS and Lasso
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Applications to ML estimators

Multi-output regression under sparsity constraints

Multi-task Lasso (k tasks):

. 1 i
min F(x) = min §||Y—Ax||%m+ZHx"’llz

XER"Xk XER”Xk 1
1=

where x(") is the ith row of matrix x.
Note: Here the g is still separable yet blocks of coordinates are

updated at each iteration (it's block proximal coordinate descent).
First convergence proof due to Tseng (2001).
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Applications to ML estimators
Support vector machines

Coordinate descent can be applied to the SVM in the dual. If the
primal with (y; € {—1,1}) reads:

1
min CZ max(0,1 — )/i(ZiTW + b))+ E”WH%
1

the classical dual of SVM for binary classification is given by:

max —laTQa + IIa s.t. yTa =0and 0 < a < (C1,
a€c€Rn 2

with Qjj = y,-yjziTzJ-.

Note: Here w is the normal to the separating hyperplane and b is
the intercept.

— Derive the dual from the primal writing the Lagrangian and
KKT optimality conditions.
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Applications to ML estimators

Support vector machines with SMO
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The dual reads:

1
mﬂgx—iaTQa + lj,—oz s.t. yToz =0and 0< a < (C1,
fe% n

Sequential minimal optimization or SMO (Platt, 1998) is a
blockwise coordinate descent in blocks of 2. Instead of cycling, it
chooses the next block greedily.

Note: This does not meet separability assumptions for
convergence we have just seen.

Note: This is what is implemented in Scikit-Learn SVC and SVR
estimators that use internally the libsvm C++ library.
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Applications to ML estimators
Support vector machines with SDCA

If one does not fit an intercept b the primal reads:

n

1
min C max(0,1 — in;TW) + Z[lwli3
weRP 1 2

and a dual formulation becomes:

max —%aTQa +1,a—TIp cpr(a).
Proximal coordinate ascent applies to this problem. When using
the stochastic approach this algorithm is called Stochastic Dual
Coordinate Ascent (SDCA).

Note: This is what is implemented in Scikit-Learn LinearSVC
when using parameter dual=True. It uses internally the liblinear
C++ library.

— Write an implementation of SDCA.
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nt Proximal coordinate descent Applications to ML estimators

Exact coordinate descent Coordinate gradient desce

Support vector machines with SDCA

Proposition (Shalev-Shwartz and Zhang (2013))
Let us define a primal point wy = Z " Diag(y) ak, where (ck)k>0
is generated by SDCA. The duality gap satisfies for all K > n,

2K-1

[ Z'D(Wk )}S

7 (1= (Do) = Do) + ko —aulft) + fczz L

where Vi, L; = Y,'2||Zi||2-

— cf. Proof in lecture notes.

34 /36 Alexandre Gramfort - Inria Coordinate descent



Applications to ML estimators
Graphical Lasso

Let A € R"™P, where rows are independent Gaussian observations
drawn from N(0, %),

The graphical Lasso estimator (Banerjee et al., 2007, Friedman et
al., 2007) reads:

min —logdet® +tr SO + \||O|1
©€eRpP*P

where ||O|1 = Zu 1©jj|.

It provides an estimate of ¥ 1 (precision matrix) when
S = ATA/n is the empirical covariance.
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Applications to ML estimators
Graphical Lasso

Stationarity conditions:
0 4SS+ A =0

where I'; € 0|0;|. Posing W = ©~ 1. It is possible to do a
coordinate descent on W. See Friedman et al. (2007).

Note: With A = 0 one recovers the maximum likelihood estimator.
Note: This is implemented the GraphLasso estimator in
Scikit-Learn or in the glasso package in R.
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