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So far you have seen:
@ gradient descent
@ proximal gradient descent
@ accelerated gradient descent
@ (proximal) coordinate descent
@ conjugate gradient
Now
o Newton methods
@ Quasi-Newton methods
@ Methods dedicated to non-linear least squares

Quasi-Newton and in particular L-BFGS are still heavily used to
tackle smooth potentially large scale optim problems in machine
learning (e.g. ¢» logistic regression, conditional random fields)
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Newton
Not seen in the course:

@ Prox-Newton methods for the twice differentiable +
proximable penalty case

e Constrained methods (x is constrained to a subset of R")

@ Stochastic quasi-Newton methods (when f is a sum)

Remark: State-of-the-art solvers like 1iblinear are combining
Prox-Newton and coordinate descent methods for logistic regression.

This course is largely based on the book:

@ Wright and Nocedal, Numerical Optimization, 1999, Springer,
Chapters 6 and 8.
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Newton
Newton method

It is used to find the zeros of a differentiable non-linear function g:
Find x such that g(x) =0, where g : R” — R".

Given a starting point xg, Newton method consists in iterating:

Xip1 = xk — &' (k) g (%)
where g’(x) is the derivative (Jacobian) of g at point x.

We have that:
o g’'(xk) is matrix in R"*"

@ each iteration requires to solve a linear system.
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Newton
Newton method in 1d

A
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Newton
Newton method?

Applying this method to the optimization problem:

in f
2 fe

consists in setting g(x) = Vf(x), i.e., looking for stationary points
(i.e. VI(x)=0).

The iterations read:
Xk+1 = Xk — sz(Xk)_]'Vf(Xk) .

Newton method is particularly interesting as its convergence is
quadratic locally around x*, i.e.:

Ixkrr = x| < Allxe = x*[|2, 7 >0 .
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Newton
Finding Newton's algorithm

Assuming f is twice differentiable, the Taylor expansion at order 2
of f at x reads:

1
Yh e R", f(x + h) = f(x) + VF(x) " h+ 5/Fv%f(x)h +o(||h]?)

Qx(h)

Can you minimize Qy(h) with respect to h?
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Newton Variable metric Quasi-Newton Non-linear least-squares

Convergence of Newton method

Theorem (Convergence of Newton method)

Let g : R" — R" assumed twice differentiable C?, and x* € R" an
isolated zero of g (g(x*) = 0). Assuming that g'(x*) is invertible,
there exists a closed ball B centered on x*, such that for every

Xp € B, the sequence x; obtained with Newton algorithm stays in
B and converges towards x*. Furthermore, there is a constant

v >0, such that ||xkr1 — x*|| < yllxk — x*||2.

— See proof in lecture notes.
Remark: Convergence of Newton is local. The method may diverge if

the initial point is too far from x*
Remark: That is why Newton should be coupled with a line search

strategy:
Xk41 = Xk — ka2f(xk)*1Vf(xk)

where px > 0 is a stepsize found by line search (Wolfe conditions).
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Newton

Newton on quadratic function
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Show that for a quadratic function
1 T T n
f(x)zix Ax—b x+c,xeR

with A symmetric positive definite, Newton method converges in
one iteration independently of the choice of xg.

Remark: Newton is therefore not affected by the conditioning of the
problem (not like Gradient descent).

— See notebook.

Alexandre Gramfort (Quasi-)Newton methods



Newton
Newton on a non-convex problem

@ Newton's method finds the stationnary points (Vf = 0).
@ It is attracted to saddle points.

@ Newton's direction may not be a descent direction:
V(x) " [(V2F(x)) ' VF(x)] <0

@ To guarantee one has a descent direction one needs to
regularize the Hessian and in practice one needs to use a line
search:

Xk+1 = Xk — pk(sz(xk) + A |,,)_1Vf(Xk)

where X > 0 is the regularization parameter and py is a
stepsize found by line search.

Remark: line search is mandatory also for convex problems.
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Variable metric
Variable metric
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The idea behind variable metric methods consists in using
iterations of the form

dix = —Bigk
Xk1 = Xk + prdic

where g = Vf(xk), Bk is a positive definite matrix and px > 0 is
a step size.

Remark: If By is a positive definite matrix —Bygx is a descent direction.

— If By = I,, it corresponds to gradient descent.
— Setting By = B is the fixed metric case.
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Variable metric
Fixed metric case

14 /45

When minimizing

in f
2 e

one can set x = Cy with C invertible (change of variable).
Let us denote f(y) = f(Cy). This leads to:

VF(y) = CTVF(Cy) .
Gradient descent applied to f(y) reads:
Yir1 = vk — piC VF(Cyi)
which means using B = CC" as it is equivalent to:
Xk11 = Xk — kaCTVf(xk) .
Question: How would you choose C for quadratic problem?
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Newton Variable metric Quasi-Newton Non-linear least-squares

Quadratic case

Theorem (Preconditioned gradient descent)

Let f(x) a positive definite quadratic form with Hessian A, and B a
positive definite matrix. The preconditioned gradient algorithm:

{ Xp = fized,

Xk+1 = Xk — pkBgk, pk optimal

has a linear convergence: ||xx+1 — x*|| < v|[xk — x*||

where: - )
V= X(BA) —1 <1l.
X(BA) +1

X(M) = A1/A, is the Euclidian conditioning i.e., ratio of largest
and lowest eigenvalues (> 1).
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Variable metric
Quadratic case

So we have a linear convergence:
X1 = X[ < yllxie = x|

where:
x(BA) -1

- <1.
X(BA) +1

’y:

The lower the conditioning of BA, the faster is the algorithm. One
cannot set B = A1 as it would imply having already solved the
problem, but this however suggests to use B so that it
approximates A~L. This is the idea behind quasi-Newton methods.

16 /45 Alexandre Gramfort (Quasi-)Newton methods



Variable metric
Drawbacks of Newton's method

@ Quadratic convergence is an interesting property, but most of
the time, Newton's method is too costly!

@ Computing the Hessian is n times more costly in time and
memory than the gradient

@ If the problem is non-convex, regularization is hard and costly
@ Then, one needs to compute H~1Vf(x) — O(n%)
o What if n = 1037

Idea of quasi-Newton methods:

mimic Newton’s direction without the computational load.
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Quasi-Newton

Table of Contents

e Quasi-Newton

18 /45 Alexandre Gramfort (Quasi-)Newton methods



Quasi-Newton
Quasi-Newton

A quasi-Newton method reads

dx = —Bkgk
Xk+1 = Xk + prdk

or
dk = _Hk_lgk )
X1 = Xk + prdi

where By (resp. H) is a matrix which aims to approximate the
inverse of the Hessian (resp. the Hessian) of f at x.

Question: How to achieve this?
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Quasi-Newton
Quasi-Newton

One can start with By = I,. how to update By at every iteration?

Idea: apply a Taylor expansion on the gradient, notice that at
point xk, the gradient and the Hessian are such that:

g1 = 8k + V2F (i) (k1 — xk) + €(Xkr1 — Xk) -

Towards convergence one should have:

gk+1 — 8k & V2F () (Xkr1 — Xk) -
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Quasi-Newton

Quasi-Newton relation (or secant condition)

Definition (Quasi-Newton relation)

Two matrices Byy1 and Hy; verify the quasi-Newton relation (or
secant condition) if:

Hicr1 (X1 — xi) = VI (xi41) — VF(x)

or
Xk+1 — Xk = Bry1(VF(xu1) — VF(xx))

Problem: How to update By keeping it positive definite?
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Quasi-Newton
Update formula of Hessian

The update strategy at iteration

dx = —Bkgk
Xk+1 = Xk + prdk

is to correct By with a symmetric matrix Ag:
Biy1 = Bi + Ay
such that the quasi-Newton relation (secant condition) holds:
Xkt1 — Xk = Bry1(8kr1 — 8«)

with By1 positive definite, assuming By is positive definite.

Idea: Use rank 1 or 2 matrices for Ay

22 /45 Alexandre Gramfort (Quasi-)Newton methods



Broyden formula (known as SR1)

Let's consider a rank 1 correction on the Hessian:
Hii1 = Hi+ow' | oc=+1,veR"

The matrix Hyy1 should verify the secant condition: yx = Hy11sk,
where v, = gxi1 — 8k and sx = X1 — Xk. It follows that:

Vi = Hisie + (astk)v = 30 € R,v = §(yx — Hxsk)
Using the equality it leads to:

Yk — Hisk = 06%[s; (v — Hisk)](vx — Hisk)

this imposes that:

o = signls (yk — Hksk)] 6 = £[s (v — Hise)| /2
This leads to:

(vk — Hisi) (v — Hisi) "
(yk — Hisi) T sk

Hiy1 = Hg +



Broyden formula (known as SR1)

Starting from:

(vk — Hiesi) (v — Hisie) "

H =H
ot Kt (vk — Hisk) "sk

and using the matrix inversion lemma
(Woordbury-Sherman-Morrison) leads to:

(sk — Bryi)(sk — Byx) "

Bii1 = By +
et ) (sk — Biyr) "k

also known as Broyden or SR1 formula.



Broyden formula

Let f a quadratic form positive definite. Let us consider the
method that, starting for xy, iterates:

Xk+1 = Xk + Sk

where the vectors sy are linearly independent. Then the sequence
of matrices starting by By and defined as:

(sk — Bryi)(sk — Biyx) "

B = B, +
= « (sk — Biyk) Tyx

where y, = Vf(xk+1) — VF(xk), converges in less than n iterations
towards A~L, the inverse of the Hessian of f.

v

— Cf. proof in lecture notes
Remark: No guarantee that the matrices By are positive definite, even if
the function f is quadratic and By = I, (¢ = —1).



Davidon, Fletcher and Powell formula

Using a rank 2 correction, it reads:
Bk+1 = Bk + auu’ + ,é’vvT .
Imposing the quasi-Newton relation (secant condition):
Bi+1yk = sk

= Biyk + au” yi)u+ B(v yi)v = s
= au y)u+ B(vyi)v = s — Bry
This equation has not a unique solution. The choice for u and v

by DFP is:
u=s, and v = By



Davidon, Fletcher and Powell formula

Solving for o and [ the equation:

a(sg yk)sk + B(yi Biyk)Bryk = sk — Bryk

we obtain



Davidon, Fletcher and Powell formula

The DFP formula is a rank 2 correction. It reads:

T T

skSk  Brykyy Bk

Bii1 = By + - : (1)
Sy Vi Vi Biyk

Let us consider the update

dx = —Bkgk
Xk+1 = Xk + pkBrgk, pk optimal

where By is positive definite and provided as well as xq. Then the
matrices By defined as in (1) are positive definite for all k > 0.

— Cf. proof in lecture notes



Davidon-Fletcher-Powell algorithm

Require: ¢ > 0 (tolerance), K (maximum number of iterations)
1. x0 € R", By > 0 (for example I,)
2: for k =0 to K do

if [|gk| < e then

4 break

5. end if

6: d, = —Bka(Xk)

7.

8

9

w

Xk+1 = Xk + pkdkx (Compute optimal step size py)
Sk = Pk
Yk = 8k+1 — 8k . .
Biyry, B
. — B SkSk o k K
10 Bri Kt s Vi ¥y Biyx
11: end for

12: return Xy

Remark: In Numpy to do things like sxs, use the np.outer function.



Davidon-Fletcher-Powell algorithm

This algorithm has a remarkable property when the function f is
quadratic.

When f is a quadratic form, the algorithm of
Davidon-Fletcher-Powell generates a sequence of directions
S0, - - - , Sk Which verify:

siA'si =0, 0<i<j<k,
Bk+1AS,' = Sj, 0 < ] < k.

()

4

Remark: This theorem says that in the quadratic case, the algorithm is
like a conjugate gradient method, which therefore converges in at most n
iterations.

Remark: This required to have an optimal step size.



Davidon-Fletcher-Powell algorithm

One can also notice that for k =n—1
BnAS;:S;,iIO,...,n—l,

and since all s; are linearly independent it implies B, = A™L.

Remark:  One can show that in the general case (non-quadratic), if the
direction dy is reinitialized to —gx periodically, this algorithm converges
to a local minimum X of f and that:

lim By = V2f(%)7! .
k—s o0
This implies that close to the optimum, the method behaves like a

Newton method. This justifies the use of px = 1 when using approximate
line search.



Quasi-Newton

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

@ The BFGS formula is derived from the formula of DFP by
swapping the roles of s, and yy.

@ The formula obtained allows to maintain an approximation H,
of the Hessian which satisfies the same properties: Hiy1 > 0
if Hx > 0 and satisfying the quasi-Newton relation:

Yk = Hiyask .

@ The BFGS formula therefore reads:

T T
YKY, Hysks, Hi
Hig1 = Hi + =25 — g

T T
Yic Sk S, Hisk
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Quasi-Newton

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

BFGS formula:

T T
YKY, Hysks) Hk

Hip1 = Hi+ =5 — —&
Y Sk Sk Hksk

Al Al
1+viA-1y

Use Sherman-Morrison formula: (A4 uv')™t = A~1
to derive an update of By 1.
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Quasi-Newton

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

BFGS formula:

T T
YkY, Hysksy Hi
Hiy1 = Hi + =K — g

T T
Y Sk Sk Hksk

Use Sherman-Morrison formula: (A+ uv')™1 = A71 — %
to derive an update of By 1.
1
Bicv1 = (In—pucsiyi )Bic(ln —1ikyicsy ) + 1ksesy - bk = e
k 2k

Remark: DFP and BFGS have the same computational cost.

33/45 Alexandre Gramfort (Quasi-)Newton methods



Quasi-Newton

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

Require: ¢ > 0 (tolerance), K (maximum number of iterations)
1: xp € R", Hy > 0 (for example /)
2: for k =0 to K do

if [|gk|l < e then

4 break

5. end if

6: dx = —H VFf(xk)

70 Xk4+1 = Xk + pkdk (optimal step size px with line search)

8

9

w

Sk = prdk
Yk = 8k+1 — 8k . .
) _ yiYe  Hisks, Hi
10 Hk+]_ = Hk + y,:rsk SkTHkSk
11: end for

12: return Xy
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

The BFGS algorithm has the same property as the DFP method:
@ in the quadratic case it produces conjugate directions
@ it converges in less than n iterations and H, = A
@ Usually combined with Wolfe or Goldstein’s rule.
but:
@ much less sensitive than DFP to the use of approximate step
size (to combine with Wolfe or Goldstein's rule).

Remark: BFGS is in scipy see scipy.optimize.fmin bfgs.



Quasi-Newton

Limited-memory BFGS (L-BFGS) algorithm

@ L-BFGS is a variant of BFGS that limits memory usage. It
was originally proposed by Liu and Nocedal in 1989:

@ Does not store matrix of the size of the Hessian, n x n which
can be prohibitive in applications such as computer vision or
machine learning where n can be millions.

o L-BFGS stores only a few vectors that are used to
approximate the matrix Hk_1

@ So the memory usage is linear in the dimension of the problem.
[Liu, D. C.; Nocedal, J. (1989). "On the Limited Memory Method for

Large Scale Optimization”. Mathematical Programming B. 45 (3):
503-528
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Quasi-Newton

Limited-memory BFGS (L-BFGS) algorithm
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L-BFGS is an algorithm of the quasi-Newton family with

dx = =BV (xx).

Difference is in the computation of the product between By
and V£(x).

Idea is to keep in memory the last low rank corrections, more
specifically the last m values of sx = xx4+1 — xx and

Yk = 8k+1 — k-

Use m times recursively the formula:

1
Bii1 = (In —pkskyi )Br(ln —pkykse ) + 1ikSkSe » bk = TS
k 2k

but never storing in memory a matrix n x n.
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Limited-memory BFGS (L-BFGS) algorithm

Let puy = ﬁ the algorithm to obtain dy reads:

Require: m (memory size)
1. g =8«

2: fori=k—1tok—mdo

3 o = MfS,-Tq

4 qg=4q—qjy

5. end for

6: z = ng

7. fori=k—mto k—1do

8

9

B =iy z
. z=z+si(a;—pB)
10: end for
11: dy = —z

where BE is positive definite matrix, e.g., a diagonal matrix, so
that initially setting z is fast.



Quasi-Newton

Limited-memory BFGS (L-BFGS) algorithm

39/45

o Like BFGS, L-BFGS does not need exact line search to
converge.

@ L-BFGS is for smooth unconstrained problem but can be
extended to handle simple box constraints (a.k.a. bound
constraints): /; < x; < u; where [; and u; are per-variable
constant lower and upper bounds. This algorithm called
L-BFGS-B is due to Byrd et al. (1995).

o L-BFGS-B in scipy as scipy.optimize.fmin 1 _bfgs_b.

[Byrd, R. H.; Lu, P.; Nocedal, J.; Zhu, C. (1995). "A Limited Memory
Algorithm for Bound Constrained Optimization”. SIAM J. Sci. Comput.
16 (5): 1190-1208. doi:10.1137,/0916069.]

— Can you solve a Lasso with L-BFGS-B?

Alexandre Gramfort (Quasi-)Newton methods



Non-linear least-squares
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non-linear least-squares

The function to minimize reads:

Newton method can be applied to the minimization of f. The
gradient and the Hessian matrix read in this particular case:

m
Vf(X = Zf; Vf(X )
i=1

and



Gauss-Newton method

Idea is to ignore the second order terms. The Hessian reads:

m

H(x) =~ Y VE)VE() " .

i=1
This matrix is always positive. Furthermore when m is much larger

than n, this matrix is often positive definite.

The Gauss-Newton method uses this approximation of H(x) in a
Newton-like solver:

xp = fixed,

Hie = Vi(x)Vei(x) ',
i=1
Xk+1 = Xk — Hk_IVf(Xk) .



Non-linear least-squares
Gauss-Newton method

To guarantee the convergence of the Gauss-Newton method, it can
be combined with a line search procedure:

xo = fixed,

Hie =Y V() Vei(x) ",
i=1
Xk4+1 = Xk — pkHI:lVf(Xk) .
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Levenberg-Marquardt method

o Levenberg-Marquardt method is a variant of Gauss-Newton
that enforces that the Hessian approximation Hj is positive
definite.

@ The idea is simply to replace Hy by Hy + Al,.

X0 = ﬁxed,
m

Hie =Y VE(x)Vei(x) ',
i=1

die = —(Hi + M) "1V F(x)

Xk41 = Xk + prdi -

o If X\ is large, method is equivalent to a gradient method.

@ The Levenberg-Marquardt method in scipy as
scipy.optimize.leastsq.



Non-linear least-squares
References

@ Wright and Nocedal, Numerical Optimization, 1999, Springer,
Chapters 6 and 8.
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