
Automatic Differentiation

Alexandre Gramfort

Master 2 Data Science, Univ. Paris Saclay
Optimisation for Data Science

course based on slides from Mathieu Blondel.

Introduction Forward Differentiation Backward Differentiation

Introduction

Gradient-based training algorithms are the backbone of modern
machine learning.

Deriving gradients by hand is:

Tedious.
Error-prone.
Quickly infeasible for complex models.
But a very good exercise for master students!

Key ingredients of deep learning:

GPUs.
Large datasets.
Automatic differentiation (autodiff).

2 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

What is Automatic Differentiation?

Computes the derivatives of a function at a given point.

Different from:

Numerical differentiation: Approximate results.
Symbolic differentiation: Produces human-readable expressions.

In neural networks, reverse autodiff = backpropagation.

3 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Gradient

For f : Rn → R, the gradient is:

∇f (x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 ∈ Rn

Coordinate-wise:

[∇f (x)]j =
∂f

∂xj
(x) = lim

h→0

f (x + hej)− f (x)

h

4 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Numerical Gradient

Finite difference approximation:

[∇f (x)]j ≈
f (x + ϵej)− f (x)

ϵ

Central finite difference:

[∇f (x)]j ≈
f (x + ϵej)− f (x − ϵej)

2ϵ

Requires n + 1 (2n) evaluations of f.

Computationally expensive for high-dimensional x .

Not very accurate for small ϵ.

Available with scipy.optimize.approx fprime

What is used by the scipy function scipy.optimize.check grad

function.

5 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Example of symbolic differentiation

Using the sympy library in Python:

1 import sympy as sp

2

3 # Define symbolic variables

4 x = sp.Symbol(’x’)

5 # Define a function

6 f = sp.sin(x) + x**2

7 # Compute derivatives

8 df_dx = sp.diff(f, x) # Derivative with respect to x

9 # Print the result

10 print(df_dx)

11 # Output: 2*x + cos(x)

6 / 24 Alexandre Gramfort Automatic Differentiation

https://www.sympy.org/en/index.html

Introduction Forward Differentiation Backward Differentiation

Automatic differentiation

A program is defined as the composition of primitive operations that
we know how to derive.

The user can focus on the forward computation / model.

1 import jax.numpy as jnp

2 from jax import grad , jit

3

4 def predict(params , inputs):

5 outputs = inputs

6 for W, b in params:

7 outputs = jnp.tanh(jnp.dot(outputs , W) + b)

8 return outputs

9

10 def loss_fun(params , inputs , targets):

11 preds = predict(params , inputs)

12 return jnp.sum((preds - targets)**2)

13

14 grad_fun = jit(grad(loss_fun , argnums =0))

→ See notebook.
7 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Directional Derivative

Derivative in the direction v ∈ Rn:

Dv f (x) = lim
h→0

f (x + hv)− f (x)

h

Interpretation: Rate of change of f in the direction v .

Finite difference approximation:

Dv f (x) ≈
f (x + ϵv)− f (x)

ϵ

Requires 2 evaluations of f (independent of n).

8 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Directional Derivative

The directional derivative is equal to the scalar product between the
gradient and v , i.e.,

Dv f (x) = ∇f (x) · v

Proof: Let g(t) = f (x + tv). Then:

g ′(t) = lim
h→0

f (x + (t + h)v)− f (x + tv)

h

At t = 0:
g ′(0) = Dv f (x)

By the chain rule:
g ′(t) = ∇f (x + tv) · v

Hence:
g ′(0) = Dv f (x) = ∇f (x) · v

9 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Jacobian

Definition

For {
f : Rn → Rm

x 7→ (f1(x), . . . , fm(x))

the Jacobian matrix is:

Jf (x) =
∂f (x)

∂x
=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

 =
[
∂f
∂x1

, . . . , ∂f
∂xn

]
=

∇f1(x)
⊤

...
∇fm(x)⊤


The gradient is the transpose of the Jacobian for m = 1 (a “wide”
Jacobian).

10 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Jacobian-Vector Product (JVP)

The Jacobian-vector product is computed as:

Jf (x)v =

∇f1(x)
⊤

...
∇fm(x)⊤

 v =

∇f1(x) · v...
∇fm(x) · v

 ∈ Rm

Finite Difference Approximation

Jf (x)v ≈
f (x + ϵv)− f (x)

ϵ

Requires only 2 function calls for (central) finite difference.

11 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Vector-Jacobian Product (VJP)

The vector-Jacobian product is computed as:

u⊤Jf (x) = u⊤
[
∂f
∂x1

, . . . , ∂f
∂xn

]
=

[
u · ∂f

∂x1
, . . . , u · ∂f

∂xn

]
∈ Rn

Finite Difference Approximation

∂f

∂xi
≈ f (x + ϵei)− f (x)

ϵ

Requires n + 1 function calls for finite difference, or 2n for central finite
difference.

12 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Chain Rule

Let f (x) = h(g(x)) = h ◦ g(x), where h, g : R→ R. Then,

f ′(x) = h′(g(x))g ′(x)

Alternatively, let y = g(x) and z = h(y), then

∂z

∂x
=

∂z

∂y

∂y

∂x
=

∂z

∂y

∣∣∣∣
y=g(x)

∂y

∂x

∣∣∣∣∣
x=x

Let f (x) = h(g(x)), where g : Rn → Rd and h : Rd → R. Then,

∇f (x)︸ ︷︷ ︸
n×1

= (∇h(g(x))⊤︸ ︷︷ ︸
1×d

Jg (x))
⊤︸ ︷︷ ︸

d×n

= Jg (x)
⊤︸ ︷︷ ︸

n×d

∇h(g(x))︸ ︷︷ ︸
d×1

13 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Chain Rule

Assume f ∈ Rn → Rm decomposes as follows:

o = f (x)

= f4 ◦ f3 ◦ f2 ◦ f1(x)
= f4 (f3 (f2 (f1(x))))

where f1 : Rn → Rm1 , f2 : Rm1 → Rm2 , . . . , f4 : Rm3 → Rm.

How to compute the Jacobian Jf (x) =
∂o
∂x ∈ Rm×n efficiently?

14 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Chain Rule

Sequence of operations
x1 = x

x2 = f1 (x1)

x3 = f2 (x2)

x4 = f3 (x3)

o = f4 (x4)

By the chain rule, we have:

∂o

∂x
=

∂o

∂x4

∂x4
∂x3

∂x3
∂x2

∂x2
∂x

=
∂f4(x4)

∂x4

∂f3(x3)

∂x3

∂f2(x2)

∂x2

∂f1(x)

∂x

= Jf4(x4)Jf3(x3)Jf2(x2)Jf1(x)

15 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Forward Differentiation

Recall that ∂f
∂xj
∈ Rm is the j th column of Jf (x)

Jacobian vector product (JVP) with ej ∈ Rn extracts the f th column

Jf (x)e1 =
∂f

∂x1

Jf (x)e2 =
∂f

∂x2
...

Jf (x)en =
∂f

∂xn

Computing a gradient (m=1) requires n JVPs with e1, . . . , en.

16 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Forward Differentiation

Jacobian-vector product with v ∈ Rn

Jf (x)v = Jf4 (x4)︸ ︷︷ ︸
m×m3

Jf3 (x3)︸ ︷︷ ︸
m3×m2

Jf2 (x2)︸ ︷︷ ︸
m2×m1

Jf1(x)︸ ︷︷ ︸
m1×n

v

Multiplication from right to left.

Cost of computing n JVPs:

n (mm3 +m3m2 +m2m1 +m1n)

Cost of computing a gradient (m = 1,m3 = m2 = m1 = n):

O
(
n3
)

17 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Forward Differentiation

o = f (x) = fK ◦ · · · ◦ f2 ◦ f1(x)
[Jf (x)]:j = JfK (xK) . . . Jf2(x2)Jf1(x)ej j ∈ {1, . . . , n}

Require: x ∈ Rn

1: x1 ← x
2: vj ← ej ∈ Rn j ∈ {1, . . . , n}
3: for k = 1 to K do
4: xk+1 ← fk (xk)
5: vj ← Jfk (xk) vj j ∈ {1, . . . , n}
6: end for
7: return o = xK+1, [Jf (x)]:j = vj j ∈ {1, . . . , n}

18 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Backward Differentiation (a.k.a. Reverse Mode)

Recall that ∇i (x)
⊤ ∈ Rn is the i th row of Jf (x).

Vector Jacobian product with ei ∈ Rm extracts the i th row:

e⊤i Jf (x) = ∇fi (x)⊤

Computing the gradient (m=1) requires only 1 VJP with e1 ∈ R1.

19 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Backward Differentiation

Vector Jacobian product with u ∈ Rm

u⊤ Jt4 (x4)︸ ︷︷ ︸
m×m3

Jf3 (x3)︸ ︷︷ ︸
m3×m2

Jt2 (x2)︸ ︷︷ ︸
m2×m1

Jf1(x)︸ ︷︷ ︸
m1×n

Multiplication from left to right.

Cost of computing m VJPs:

m (mm3 +m3m2 +m2m1 +m1n)

Cost of computing a gradient (m = 1,m3 = m2 = m1 = n):

O
(
n2
)

It is more efficient than forward differentiation if m = 1 (for m < n).

20 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Algorithm: Backward Differentiation

o = fK ◦ · · · ◦ f1(x)
[Jf (x)]i ,: = e⊤i JfK (xK) . . . Jf1(x) i ∈ {1, . . . ,m}.

Require: x ∈ Rn

1: x1 ← x u1 ← ei ∈ Rm i ∈ {1, . . . ,m}
2: for k = 1 to K do
3: xk+1 ← fk (xk) (Store the intermediate results)
4: end for
5: for k = K to 1 do
6: u⊤i ← u⊤i Jfk (xk) i ∈ {1, . . . ,m} (Iterate from K to 1)
7: end for
8: return o = xK+1, [Jf (x)]i ,: = u⊤i i ∈ {1, . . . ,m}

Remark: You trade computation for memory as you need to store the
intermediate results.

21 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Examples of VJPs

Let W ∈ Ra×b, u ∈ Ra, x ∈ Rb.

For f (x) = g(x) element-wise:

f maps Rb to Rb.

Jf (x) = diag(g ′(x)) ∈ Rb×b

VJP:

u⊤Jf (x) = u ∗ g ′(x) (∗ means element-wise multiplication).

For f (x) = Wx :

f maps Rb to Ra.
Jf (x) = W maps Rb to Ra.
VJP:

u⊤Jf (x) = W⊤u ∈ Rb

For f (W) = Wx ?

22 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Summary: Forward vs. Backward Differentiation

Forward Differentiation

Uses Jacobian-Vector Products (JVPs).

Efficient for tall Jacobians (m ≥ n).

Does not store intermediate computations.

Backward Differentiation

Uses Vector-Jacobian Products (VJPs).

Efficient for wide Jacobians (m ≤ n).

Stores intermediate computations.

23 / 24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

References

Two minimalist implementations of autodiff:

Autodidact, by Matthew Johnson.
https://github.com/mattjj/autodidact

Micrograd, by Andrej Karpathy.
https://github.com/karpathy/micrograd

24 / 24 Alexandre Gramfort Automatic Differentiation

https://github.com/mattjj/autodidact
https://github.com/karpathy/micrograd

	Introduction
	Forward Differentiation
	Backward Differentiation

