Automatic Differentiation

Alexandre Gramfort

Master 2 Data Science, Univ. Paris Saclay
Optimisation for Data Science
course based on slides from Mathieu Blondel.

Introduction
Introduction

o Gradient-based training algorithms are the backbone of modern
machine learning.
@ Deriving gradients by hand is:

Tedious.

Error-prone.

Quickly infeasible for complex models.

But a very good exercise for master students!

o Key ingredients of deep learning:

e GPUs.
o Large datasets.
o Automatic differentiation (autodiff).

2/24 Alexandre Gramfort Automatic Differentiation

Introduction

What is Automatic Differentiation?

e Computes the derivatives of a function at a given point.
o Different from:

e Numerical differentiation: Approximate results.
o Symbolic differentiation: Produces human-readable expressions.

@ In neural networks, reverse autodiff = backpropagation.

3/24 Alexandre Gramfort Automatic Differentiation

Introduction
Gradient

@ For f : R" — R, the gradient is:

1(x)
6X1
Vi(x) = ; cR"
P (x)
@ Coordinate-wise:
of . f(x+ hej) — f(x)
f p = — = J
[VFGL = g, (<) = fim :

Alexandre Gramfort Automatic Differentiation

Introduction
Numerical Gradient

e Finite difference approximation:

f(x +ee) —f(x)

€

[V =

Central finite difference:

f(x +eg) — f(x — cej)
2¢

[VE(x)]; ~

Requires n + 1 (2n) evaluations of f.

Computationally expensive for high-dimensional x.

°
°

@ Not very accurate for small .

@ Available with scipy.optimize.approx_fprime
°

What is used by the scipy function scipy.optimize.check grad
function.

5/24 Alexandre Gramfort Automatic Differentiation

Introduction

Example of symbolic differentiation

Using the sympy library in Python:

1 import sympy as sp

N

Define symbolic variables

X = sp.Symbol(’x’)

Define a function

f = sp.sin(x) + x**2

Compute derivatives

df _dx = sp.diff(f, x) # Derivative with respect to x
Print the result

print (df_dx)

1 # Output: 2*x + cos(x)

© © N o U A~ W

=
o

6/24 Alexandre Gramfort Automatic Differentiation

https://www.sympy.org/en/index.html

Introduction Fo Differentiation 3 ard Differentiation

Automatic differentiation

@ A program is defined as the composition of primitive operations that
we know how to derive.

@ The user can focus on the forward computation / model.

1 import jax.numpy as jnp
> from jax import grad, jit
3
4 def predict(params, inputs):
outputs = inputs
for W, b in params:
outputs = jnp.tanh(jnp.dot(outputs, W) + b)
return outputs

© ~N o o

10 def loss_fun(params, inputs, targets):

11 preds = predict(params, inputs)

12 return jnp.sum((preds - targets) *x*2)
13

14 grad_fun = jit(grad(loss_fun, argnums=0))

— See notebook.

7/24 Alexandre Gramfort Automatic Differentiation

Introduction
Directional Derivative

Derivative in the direction v € R":

Dy f(x) = i|7i_r>n0 f(x+ h\;)) — f(x)

Interpretation: Rate of change of f in the direction v.

Finite difference approximation:

- f(x+ev) —f(x)

D,f(x)

Requires 2 evaluations of f (independent of n).

8/24 Alexandre Gramfort Automatic Differentiation

Introduction
Directional Derivative

@ The directional derivative is equal to the scalar product between the
gradient and v, i.e,,
D,f(x) = Vf(x)-v

@ Proof: Let g(t) = f(x + tv). Then:

J(t) = lli_rpo f(x+(t+ h)/\:) — f(x + tv)

At t =0:
g'(0) = Dy f(x)

By the chain rule:
g(t)=Vf(x+tv) v

Hence:
g'(0) = D,f(x) = VFf(x)-v

9/24 Alexandre Gramfort Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Jacobian

For
{ f:R" —RM
x = (A(x),..., fm(x))

the Jacobian matrix is:

e e VA(x)T
J(X)_éf(x)_ . : . _[ﬁ Bf]_ :
) = = | L T ox o Oxe | g
Ox of of, T
o g Vi

@ The gradient is the transpose of the Jacobian for m =1 (a “wide"
Jacobian).

Alexandre Gramfort Automatic Differentiation

Introduction

Jacobian-Vector Product (JVP)

The Jacobian-vector product is computed as:
VAa(x)T VAa(x)-v
Jr(x)v = : v = : e R"
Vin(x)" Vim(x)-v

Finite Difference Approximation

f(x+ev)—f(x)

€

Jr(x)v =~

Requires only 2 function calls for (central) finite difference.

11/24 Alexandre Gramfort Automatic Differentiation

Introduction

Vector-Jacobian Product (VJP)

The vector-Jacobian product is computed as:

T T | Of of of of
u Jei(x)=u [371,...,3)(”] = [u-a—xl,...,u-a—xn] e R"

Finite Difference Approximation

of _ f(x+ee) —f(x)

ox; €
Requires n + 1 function calls for finite difference, or 2n for central finite
difference.

12 /24 Alexandre Gramfort Automatic Differentiation

Introduction
Chain Rule

o Let f(x) = h(g(x)) = ho g(x), where h,g : R — R. Then,

Fi(x) = H'(g(x))g'(x)

@ Alternatively, let y = g(x) and z = h(y), then

0z 0z90y 0z

dx dydx Oy

9y
)aX

y=g(x

o Let f(x) = h(g(x)), where g : R" — R and h: RY — R. Then,

VF(x) = (Vhg(x))' Je(x)" = Je(x)" Vh(g(x))
~—— ———— —— H/—/%/—’

nx1 1xd dxn nxd dx1

X=X

13 /24 Alexandre Gramfort Automatic Differentiation

Introduction
Chain Rule

@ Assume f € R" — R™ decomposes as follows:
o = f(x)
= ﬁl [¢] f‘z)’ @) fz o fi.(X)
= fa (3 (2 (A(x))))
o where fi : R” —» R™ f, : R™ — R™, ... f :R™ — R".

@ How to compute the Jacobian Jr(x) = % € R™*" efficiently?

14 /24 Alexandre Gramfort Automatic Differentiation

Introduction
Chain Rule

@ Sequence of operations
X1 =X
xo = f1(x1
x4 = f3(x3

(x1)
x3 = fr(x2)
(x3)
(xa)

O:ﬂ; X4

@ By the chain rule, we have:

do 0o Oxg Ox3z Oxo

@ N 8X4 3X3 8X2 Ox
_ aﬁ;(X4) 8%(X3) (9f2(X2) 8ﬂ(x)
8X4 8X3 aXQ ox
= Ju(xa) I (x3) I, (x2) I (%)

Alexandre Gramfort Automatic Differentiation

Forward Differentiation
Forward Differentiation

@ Recall that g—; € R™ is the j* column of J¢(x)

o Jacobian vector product (JVP) with e; € R” extracts the fi' column

of

J = —
f(X)el 8X1

of

J = —
f(X)62 8X2

of

Jr(x)en = B,

e Computing a gradient (m=1) requires n JVPs with ey, ..., e,.

16 /24 Alexandre Gramfort Automatic Differentiation

Forward Differentiation
Forward Differentiation

@ Jacobian-vector product with v € R”

Jr(x)v = Jg, (xa) I (x3) Jp, (x2) I (x) v
e e N — N —

mxXm3 m3Xmp mpXmp miXn

Multiplication from right to left.
@ Cost of computing n JVPs:

n(mms + m3my + mamy + myn)
@ Cost of computing a gradient (m =1, m3 = my = my = n):

0 (n3)

17 /24 Alexandre Gramfort Automatic Differentiation

Forward Differentiation
Forward Differentiation

@ o=f(x)=fko---ohofi(x)
° [Jf(X)]:j = JfK(XK) .. .sz(X2)_/f1(X)ej je {1, RN n}

Require: x € R”
X1 < X
vi<—eg eR” je{l,...,n}
: for k=1to K do
Xi41 < i (xk)
vi <= Jg (xk)v; je{l,...,n}
end for
return o = xk11,[Jr(x)]; =v; j€{l,...,n}

Noa ke nR

Alexandre Gramfort Automatic Differentiation

Backward Differentiation

Backward Differentiation (a.k.a. Reverse Mode)

o Recall that V;(x)T € R" is the it row of J¢(x).

@ Vector Jacobian product with e; € R™ extracts the it" row:
& Jr(x) = V£i(x)"

o Computing the gradient (m=1) requires only 1 VJP with e; € RL.

19 /24 Alexandre Gramfort Automatic Differentiation

Backward Differentiation

Backward Differentiation

@ Vector Jacobian product with u € R™

u' Jy, (xa) I (33) Je, (32) g (%)
o N — N~

mxXm3 m3Xmp mpXmp miXn

Multiplication from left to right.
@ Cost of computing m VJPs:

m(mms3 + m3my + mamy + myin)
o Cost of computing a gradient (m =1, m3 = my = my = n):
0 (n2)

e It is more efficient than forward differentiation if m =1 (for m < n).

20/24 Alexandre Gramfort Automatic Differentiation

Backward Differentiation

Algorithm: Backward Differentiation

@ 0="fxo---ofi(x)
o [Jr(X)];. = e Ji(xk) ... Ja(x) ie€{L,...,m}.

Require: x € R”
Lx<xu<+—eeR™ je{l,...,m}
for k=1 to K do
Xk+1 < fx (xk) (Store the intermediate results)
end for
for k = K to 1 do
ul «ulJe (xk) i€{l,...,m} (lterate from K to 1)
end for
return o = xk11, [Jr(x)];, = ul ie{l,...,m}

© N RN

Remark: You trade computation for memory as you need to store the
intermediate results.

21 /24 Alexandre Gramfort Automatic Differentiation

Backward Differentiation
Examples of VJPs

Let W € R¥*P y € R? x € Rb.

e For f(x) = g(x) element-wise:
o f maps R® to R®.

Jr(x) = diag(g’(x)) € RP*®
o VIJP:
u' Ji(x) = ux g'(x) (* means element-wise multiplication).
e For f(x) = Wx:
o f maps R® to R?.

o Jr(x) = W maps R® to R?.
o VIJP:

u'Jr(x) = W'ueRP
o For f(W)= Wx?

Alexandre Gramfort

Automatic Differentiation

Introduction Forward Differentiation Backward Differentiation

Summary: Forward vs. Backward Differentiation

Forward Differentiation

@ Uses Jacobian-Vector Products (JVPs).
o Efficient for tall Jacobians (m > n).

@ Does not store intermediate computations.

Backward Differentiation
@ Uses Vector-Jacobian Products (VJPs).
o Efficient for wide Jacobians (m < n).

@ Stores intermediate computations.

23 /24 Alexandre Gramfort Automatic Differentiation

Backward Differentiation
References

Two minimalist implementations of autodiff:

o Autodidact, by Matthew Johnson.
https://github.com/mattjj/autodidact

@ Micrograd, by Andrej Karpathy.
https://github.com/karpathy/micrograd

24 /24 Alexandre Gramfort Automatic Differentiation

https://github.com/mattjj/autodidact
https://github.com/karpathy/micrograd

	Introduction
	Forward Differentiation
	Backward Differentiation

