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Motivation
Constrained optimization problem for FW

We consider the constrained optimization problem (P):

min f(x)

x€D

@ where f is a convex objective function

@ D is the domain which we assume is a convex and compact set.

— Assuming f is smooth how would you solve this?
— Give me examples in machine learning of such a problem.
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Motivation
Constrained optimization problem for FW

We consider the constrained optimization problem (P):

min f(x)

@ where f is a convex objective function

@ D is the domain which we assume is a convex and compact set.

— Assuming f is smooth how would you solve this?
— Give me examples in machine learning of such a problem.

Remark: Compactness of D is not necessary for projected gradient algo.

Remark: Frank-Wolfe algorithm is a projection free algorithm.
Remark: No assumption that D is of finite dimension.
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Motivation

Constrained optimization problem

min f(x)

Image courtesy of Martin Jaggi (cf. [Jagl3]).
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Motivation

Many applications

network flows / transportation problems

greedy selection and sparse optimization

with wavelets (infinite-dimensional space)
structured sparsity and structured prediction
low-rank matrix factorizations, collaborative filtering
total-variation-norm for image denoising

submodular optimization

boosting

Remark: Impressive revival in recent years in machine learning due to its
low memory requirement and projection-free iterations
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Motivation

Application:

Low-Rank Matrix Completion for collaborative filtering

Let Y € R™™ be a partially observed data matrix.

Remark: Think of n as users and m as products and Y contains grades.

Q denotes the entries of Y that are observed (|Q2] < n x m)

We want to solve:

i i — X;)? st <r.
Jmin ST (Y= X st X<
(if)e

where || X||y = trace (\/XTX> me{m Y ai(X).
It is the nuclear norm (sum of singular values).

Remark: || - ||n is a convex approximation of the rank.

Remark: C={X e R"™"s.t. ||X]|ln < r} convex.
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Algorithm
LMO and linearization

@ Linearization of f at x:
f(s) = f(x)+ (VF(x),s — x) = gx(s)
@ The Linear Minimization Oracle (LMO)

LMOp(d) = argmin (d, s)
se€D

= LMOp(Vf(x)) = arg min gi(s)
scD

e ldea: For v € [0,1]

XKt = A LMOp(VF(x¥)) + (1 — 7)x«

Remark: Step depends on domain D and Vf(x*), hence the name conditional
gradient.
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1 x%eD

2: for k=0to ndo

32 s=LMOp(VF(xK))

4: v = %4_2

5. xKL=(1—)xk + s
6: end for

7: return x"t1
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1 x%eD

2: for k=0to ndo

32 s=LMOp(VF(xK))

4: v = %4_2

5. xKL=(1—)xk + s
6: end for

7: return x"t1

With line search:

v = argmin f((1 — 7)x* 4 s)
v€[0,1]

Alexandre Gramfort Frank-Wolfe / Conditional Gradient algorithm



Algorithm
Convergence

e Marguerite Frank and Philip Wolfe showed in [FW56] that:
F(x*) = f(x) < O(1/k)

@ Provided that:

e f is smooth, convex and has some “curvature”
e D is compact and convex

Remark: Same rates as projected gradient method but with simpler
iterations. It is a projection free algorithm.

Remark: No free lunch: LMOp(Vf(x)) needs to be easy.
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Algorithm
Curvature constant vs. L-Liptschitz gradient

Let us define curvature constant Cr as:

A 2
= sup  —(f(y) —f(x) = {y —x,VF(x))) .
x,s€D, Y
v€[0,1]
y=x+7(s—x)

Let f be a convex and differentiable function with its gradient Vf being
Lipschitz-continuous w.r.t. some norm || - || over the domain D with
Lipschitz-constant L > 0. Then:

Cr < diamH.||(D)2L||.|| .

PROOF. Give it a try!

Remark: For L-smooth convex function on a compact convex domain: Cr exists
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Convergence proof
Convergence proof

For f convex, with curvature C¢ and D convex and compact. For
each k > 1, the iterates x* of the Frank-Wolfe algorithm satisfy
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Convergence proof
Convergence proof

PROOF. By definition of the Ct:

) < F) 47 (s = x, VA0 + 2

—8(x)
forall x,s € D, y =x+ (s —x), v €[0,1].
Writing h(x*) = f(x*) — f(x*) for the error on objective, we have:
h(x*T1) < h(x¥) — vg(x*) + 722(_} (Definition of C)

2
< h(x¥) = vh(x*) + %Cf (h < g by convexity & prop. of s)

=(1- fy)h(xk) + fo.

From here, the decrease rate follows from a simple lemma.
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Motivation Algorithm Convergence proof

Convergence proof

Suppose a sequence of numbers (hy ) satisfies

ke < (1= 7¥)hie + (v9)?C

for vk k+2, and k =0,1,..., and a constant C. Then

PROOF. Trivial by induction.
Remark: [LJJ13] shows a linear/exponential convergence if f strongly
convex and use line-search. It is like projected gradient descent but

without projection!
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Convergence proof

Optimality certificate (almost for free)

We solve:

min f(x)

Let:

w(x) = Enellg f(x)+(Vf(x),s—x)

Lemma (Weak duality)
w(x) < f(x*) < f(x)

So if f(x) —w(x) <€, xis an
e-solution.
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Convergence proof
Atomic Sets for fast LMO computation

If
D = conv(.A)

where A is a set (possibly infinite) of atoms/vectors. A is an
“Atomic Set”

Then we have that Vx € D, LMOp(V{(x)) € A (follows from the
def. of a convex hull).

Example: ¢; ball is an atomic set

D = conv({e|i € [n]} U{—ei|i € [n]})

So LMOp(VF(x¥)) € {ei]i € [n]} U {—ei|i € [n]}.

Remark: We just need to find the smallest (Vf(xk), Le;)
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Practice

Let's practice

— frank_wolfe.ipynb notebook.
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Practice
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