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Motivation non-convex CD Majorization-Minimization (MM)

Why non-convexity matters?
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Motivation non-convex CD Majorization-Minimization (MM)

Non-convexity and machine learning

Sparsity is a way to do feature selection while learning

ℓ1 regularization is just a convex surrogate of the ℓ0
pseudo-norm which is the true quantification of sparsity.

General non-convex optimization is (too) hard

but for machine learning, e.g., F (x) = f (x) + g(x) there is
hope !

We’ll focus on non-convex regularizations
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Non-convex penalties

Use a non-convex separable penalty g(x) =
∑

i gi (x
(i)) ≈ λ∥x∥0:

x̂ = argmin
x∈Rn

(
f (x)︸︷︷︸
data fit

+
n∑

i=1

gi (x
(i))︸ ︷︷ ︸

regularization

)
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Non-convex penalties

Use a non-convex separable penalty g(x) =
∑

i gi (x
(i)) ≈ λ∥x∥0:

x̂ = argmin
x∈Rn

(
f (x)︸︷︷︸
data fit

+
n∑

i=1

gi (x
(i))︸ ︷︷ ︸

regularization

)

Adaptive-Lasso Zou (2006) / ℓ1 reweighted Candès et
al. (2008)

gi (t) = λ|t|q with 0 < q < 1
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Non-convex penalties

Use a non-convex separable penalty g(x) =
∑

i gi (x
(i)) ≈ λ∥x∥0:

x̂ = argmin
x∈Rn

(
f (x)︸︷︷︸
data fit

+
n∑

i=1

gi (x
(i))︸ ︷︷ ︸

regularization

)

ℓ1 reweighted Candès et al. (2008)

gi (t) = λ log(1 + |t|/γ)
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Motivation non-convex CD Majorization-Minimization (MM)

Non-convex penalties

Use a non-convex separable penalty g(x) =
∑

i gi (x
(i)) ≈ λ∥x∥0:

x̂ = argmin
x∈Rn

(
f (x)︸︷︷︸
data fit

+
n∑

i=1

gi (x
(i))︸ ︷︷ ︸

regularization

)

MCP (minimax concave penalty) Zhang (2010) for λ > 0 and
γ > 1

gi (t) =

{
λ|t| − t2

2γ , if |t| ≤ γλ
1
2γλ

2, if |t| > γλ
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Motivation non-convex CD Majorization-Minimization (MM)

Non-convex penalties

Use a non-convex separable penalty g(x) =
∑

i gi (x
(i)) ≈ λ∥x∥0:

x̂ = argmin
x∈Rn

(
f (x)︸︷︷︸
data fit

+
n∑

i=1

gi (x
(i))︸ ︷︷ ︸

regularization

)

SCAD (Smoothly Clipped Absolute Deviation) Fan et Li
(2001) for λ > 0 and γ > 2

gi (t) =


λ|t|, if |t| ≤ λ
γλ|t|−(t2+λ2)/2

γ−1 , if λ < |t| ≤ γλ
λ2(γ2−1)
2(γ−1) , if |t| > γλ

Remark: theoretically and algorithmically difficult (stopping criteria, local

minima, etc.)
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Classical penalties

ℓ1 (convex)
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Classical penalties

ℓ0 (non-convex)
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Classical penalties

ℓ2 (convex)
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Classical penalties

enet (convex)
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Classical penalties

sqrt (non-convex)
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Classical penalties

log (non-convex)
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Classical penalties

mcp (non-convex)
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Classical penalties

scad (non-convex)
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Classical penalties

l0

sqrt

l22

enet

log

mcp

scad

l1
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Motivation non-convex CD Majorization-Minimization (MM)

CD for composite separable problem

We consider:

F (x) = f (x) +
n∑

i=1

gi (x
(i)) ,

with

f convex, differentiable

g(x) =
∑

i gi (x
(i)) separable

each gi convex or non-convex

6 / 13 Alexandre Gramfort Algorithms for non-convex optimization in ML



Motivation non-convex CD Majorization-Minimization (MM)

Proximal coordinate descent

Parameters: γ1, . . . , γn > 0

Algorithm:

Choose ik+1 ∈ {1, . . . , n}{
x
(i)
k+1 = ηγigi

(
x
(i)
k − γi∇i f (xk)

)
if i = ik+1

x
(i)
k+1 = x

(i)
k if i ̸= ik+1

ηγigi (z) = argminx∈R gi (x) +
1
2γi

(x − z)2 (Prox. operator)

Remark: In non-convex case no guarantee to find a global minimum.
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Regularization (1D): No gi(z) = 0

η0(z) = z

η0
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Motivation non-convex CD Majorization-Minimization (MM)

Regularization (1D): Ridge gi(z) = z2

ηRidge,λ(z) =
z

1 + 2λ

ηRidge,λ
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Motivation non-convex CD Majorization-Minimization (MM)

Regularization (1D): Lasso gi(z) = |z |

ηLasso,λ(z) = sign(z)(|z | − λ)+ (Soft thresholding)

ηST,λ
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Regularization (1D): ℓ0 gi(z) = 1z ̸=0

ηℓ0,λ(z) = z1|z|≥
√
2λ (Hard thresholding)

ηHT,λ
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Regularization (1D): MCP

ηMCP,λ,γ(z) =

{
sign(z)(|z | − λ)+/(1− 1/γ) if |z | ≤ γλ

z if |z | > γλ

ηMCP,λ,γ
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Motivation non-convex CD Majorization-Minimization (MM)

Regularization (1D): SCAD

ηSCAD,λ,γ(z) =


sign(z)(|z | − λ)+/(1− 1/γ) if |z | ≤ 2λ

([γ − 1)z − sign(z)γλ]/(γ − 2) if 2λ ≤ |z | ≤ γλ

z if |z | > γλ

ηSCAD,λ,γ
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Regularization (1D): log gi(z) = log(ε+ |z |)

ηlog,λ(z) = ...

ηlog,λ,γ
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Regularization (1D): sqrt gi(z) =
√
|z |

ηsqrt,λ(z) = ...

ηsqrt,λ
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Regularization (1D): Enet gi(z) = ρ|z |+(1−ρ)z2

ηEnet,λ,ρ(z) = ...

ηEnet,λ,γ
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Level lines for log
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Level lines for sqrt
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Prox. CD with squared loss

Let f (x) = 1
2∥y − Ax∥2, where y ∈ Rm, A ∈ Rm×n is the design

matrix with columns A1, . . . ,An (one per feature)

Consider minimizing over x (i), with all x (j), j ̸= i fixed.

We obtain:

x (i) ← η 1
∥Ai∥2

gi

(
x (i) +

A⊤
i r

∥Ai∥2
)

where r = y − Ax is the current residual.

Repeat these updates by cycling or random pass over coordinates.

→ notebook
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Adaptive-Lasso

Many names for the same idea:

Adaptive-Lasso Zou (2006)

ℓ1 reweighted Candès et al. (2008)

DC-programming (for Difference of Convex Programming)
Gasso et al. (2008)
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Intuition for adaptive-Lasso & Majorization-Minimization

A non-convex concave function can be upper bounded by its
tangent:

0 xk

g(xk) + g0(xk)(x� xk) g(x)

The idea of Majorization-Minimization (MM) is to minimize
convex majorant functions iteratively.
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Adaptive Lasso (for q = 1/2)

Example : take gj concave e.g. gj(t) = λ|t|q with q = 1/2

Require: X , y, number of iterations K , regularization λ
1: Initialization: ŵ ← (1, . . . , 1)⊤

2: for k = 1, . . . ,K do

3: θ̂ ← argmin
θ

∥y − Xθ∥22
2

+ λ

p∑
j=1

ŵj |θj |


4: ŵj ← g ′

j (θ̂j), ∀j ∈ J1, pK
5: end for
6: return θ̂

Remark: in practice no need to do many iterations (5 iterations)

Remark: use a Lasso solver to compute θ̂

→ notebook
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