Exercises: intro to optimization and gradient descent

1 Convexity: general results

1.1

Show that a sum of smooth functions is smooth. What is the corresponding smoothness constant?

Show that the sum of strongly convex functions is strongly convex. What is the corresponding strong
convexity constant ?

1.2

Show that @ — ||z|| is convex, where || - || is any norm on R¢.

1.3

Let f: RY — R convex. Show that g(z) = f(Az + b) is convex, where A € R and b € R%. If f is
pu-strongly convex, is g strongly convex? If so, what is a strong convexity constant of g? If f is L-smooth,
is g smooth? If so, what is a smoothness constant of g7

Hint: You can demonstrate, and then use the fact that opmin(AB) > Omin(A)omin(B) and opax(AB) <
Omax (A)Tmax(B) for two square matrices A, B.

1.4

Let hy,...,h, : R = R some convex function, X € R™*P and define
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where z; € RP is the n-th row of X. Assume that the h; are such that sup,cp by (t) = M < +00. Show
that f is smooth, and determine a smoothness constant.

2 Convexity / non-convexity of matrix functions

2.1

Let m € R and define f(z) = 3(z — m)?, g(a,b) = (ab —m)?. What are the gradient/ Hessian of these
functions? Are these functions convex 7

2.2

Determine the set of points a,b such that V2g(a,b) is positive. What do you observe at the minimum?
Could we have predicted this?
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2.3

Let M € RP*? and define f(X) = || X — M|%, g(A, B) = $||AB — M||% where A, B € RP*P. What are

the gradient/ Hessian of these functions? Are these functions convex ?

Hint: here, it is convenient to write the Hessians as linear operators. For instance for f, we can write
V2f(X)(U) = ... where ... is a linear function of U € RP*P. For a vector function h : R? — R one can
recover the gradient and Hessian by taking identifying the terms in the Taylor expansion of h(z +¢):

F@+e) = f(@) + (V(x),e) + %<e, V2 f(2)e) + ...

3 Polyak-Lojasciewicz inequality

Let f: R — R be a p-strongly convex function. Let z* its arg-minimum. Show that f verifies the
Polyak-Lojasciewicz inequality:

Ve e RY, f(x)— f(z*) < i”vf(ﬂ?)”2

4 Gradient descent in a simple case

We let p > 0, and consider a vector b € RP and a matrix A € RP*P. We assume that A is a symmetric
matrix with positive eigenvalues Ayax = A1 > -+ > Ay = Apin. We define the following quadratic objective
function:

1
f(z) = §xTAx —b'x

Exercise 1: Show that this function is convex, and that its gradient is given by V f(z) = Az — b. Find
the analytical expression of its minimizer z*, and of f(z*).

We now consider the sequence of iterates of gradient descent with a step size p > 0, starting from
o = 0:
Forn>0: z,41 =, — pVf(x,)

Exercise 2: Obtain a closed form expression for z,,. Hint : what recursion does the sequence y,, = x,, —z*
satisfy?
We now use the spectral decomposition of A, and write

A=U"DU
where D = diag(A1,...,Ap) contains the eigenvalues of A and U € RP*P contains the eigenvectors of A.
We recall that UUT =UTU = I.

Exercise 3: Define z, = U(z, — z*). Show that z, is given by
zn = (I, — pD)" 2

Give a condition on p for this sequence to converge to 0.
1

Amax ©

In the following, we assume that p =

Exercise 4: Demonstrate that ||z, — z*| < (1 — $=in)7||z*|.

This is what we call linear convergence, and 1 — ;\\“‘—“ is the rate of convergence.
max
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The quantity xk = % is called the conditioning of the matrix A, and, by extension, of the function f. This
number is always between 0 and 1. The closer it is to one, the faster gradient descent converges.

Here, if for instance x = 1, then the convergence is very fast: ||z, — z*|| < 55 ||2*||, every iteration halves
the error. However, in some cases we can have some very poorly conditioned problems.

Exercise 5: Assume that k = —, and that ||z*|| = 1. How many iterations of gradient descent are
10007 %) 13’ g
needed to reach an error ||z, — z*[| < 57 and to get |z, — 2*|| < 1557

In these badly conditioned case, it would be useful to obtain a bound on the error that does not depend
on the conditioning of the problem. To get such a bound, we look at another measure of the error,

Exercise 6: Show that for all z, f(z) — f(z*) = 4(z — 2*) T A(z — 2*). Deduce a closed form formula for

We are now ready to give a bound that does not depend on the conditioning of the problem:

Exercise 7: Show that for all x € [0, 1] and all n we have (1 — pu)?"u < 2n1+1. Deduce that

* 1 * (|2
flxn) — f(2¥) < m”z |

This is what we call sub-linear convergence. Note that this rate of convergence does not get worse when
Amin goes to 0: it does not depend on the conditioning of the problem.
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