
Optimization for datascience exercises

December 9, 2024

Ex. 1 — We consider samples x1, . . . , xn ∈ Rp and targets y1, . . . , yn ∈ R. We define the
scalar function ϕ(u) =

√
u2 + 1 and consider the optimization problem

min
β

f(β) =
1

n

n∑
i=1

ϕ(⟨xi, β⟩ − yi)

Mark as true or false.

1.This loss function corresponds to a classification problem

2.The function ϕ is such that ϕ′′(u) ∈ [0, 1] for all u.

3.The function f is convex.

4.The function f is strongly convex

5.The function f is smooth

6.The function f is 1
n

∑n
i=1 ∥xi∥2−smooth

Ex. 2 — Let A a symmetric, positive d× d matrix, b a vector of size d and define

f(w) =
1

2
⟨w,Aw⟩+ ⟨b, w⟩

We consider the iterates of gradient descent with a step size αt, starting form w0 = 0.

wt+1 = wt − αt∇f(wt)

1.We take αt that minimizes f(wt+1). What is the value of ⟨∇f(wt+1),∇f(wt)⟩?
2.What is the step size that minimizes f(wt+1)?

3.We take for all t the step size αt that minimizes f(wt+1). With that choice of step
size, does gradient descent converges to the solution in a finite number of iterations ?

4.Is there a sequence of step sizes αt such that gradient descent converges in d + 1
iterations ?
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Ex. 3 — Consider the problem given by

w∗ ∈ arg min
w∈Rd

f(w) =
1

n

∑
i=1

fi(w), (1)

where fi is L–smooth for i = 1, . . . , n,. We assume that f is µ−strongly convex, let w∗ its
minimizer, and suppose that we have for all i, ∇fi(w

∗) = 0.
The iterates of the SGD (stochastic gradient descent) method with constant step size are
given by

wt+1 = wt − α∇fit(w
t), (2)

where α > 0 is the step size and it ∈ {1, . . . , n} is chosen i.i.d with uniform probability at
each iteration.

1.Show that we have for all w:

∥∇fi(w)∥ ≤ L∥w − w∗∥

2.Demonstrate

Eit

[
∥wt+1 − w∗∥2

]
≤ (1− 2αµ+ α2L2)∥wt − w∗∥2

where the expectation is taken with respect to the random index it. Hint: you can
show that for all w, we have ⟨∇f(w), w − w∗⟩ ≥ µ∥w − w∗∥2.

3.What is the value of α that gives the fastest convergence rate ? What type of bound
on ∥wt − w∗∥2 do we get?

4.What convergence regime do you get ? Is this surprising considering the behavior of
SGD seen in class? Comment.

Ex. 4 — We let f : Rp → R. Coordinate descent tries to minimize f alternatively with
respect to individual coordinates.
We denote wt the iterates. At iteration t, we chose an index i ∈ {1, . . . , p} and try to
minimize f with respect to wt

i without changing the other coordinates wt
j , j ̸= i. More

formally, we define ϕi(x,w) = f(w1, . . . , wi−1, x, wi+1, wp) and set at each iteration:

wt+1
i = argmin

x
ϕi(x,w

t) and wt+1
j = wt

j for j ̸= i

The index i is typically chosen as cyclic : i = 1 + (t mod p). Therefore , at iteration 1,
the coordinate 1 is updated, at iteration 2, the coordinate 2 is updated, ... , at iteration p
the coordinate p is updated and at iteration p+ 1 the coordinate 1 is modified again.

1 Assume that f is the quadratic function:

f(w) =
1

2
⟨w,Aw⟩ − ⟨b, w⟩

Compute the update rule to minimize ϕi.
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2 At iteration t+ 1, we update the coordinate i. Demonstrate that

f(wt+1)− f(wt) = −(Awt − b)2i
2Aii

≤ −(Awt − b)2i
2Amax

where Amax = maxiAii

3 At iteration t, the coordinate that is updated is i such that (Awt − b)2i is maximal.
Show that

f(wt+1)− f(wt) ≤ −∥Awt − b∥2

2pAmax

4 Let w∗ = A−1b. Demonstrate that ∥Aw − b∥2 ≥ 2σmin(A)(f(w)− f(w∗)).
Provide a convergence rate for the coordinate descent method. What is the difference with
gradient descent ? When is it faster, or slower? Hint: what is the link between Amax and
σmax(A)?
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