Optimization for datascience exercises

December 9, 2024

Ex. 1 — We consider samples z1,...,z, € RP and targets y1,...,y, € R. We define the
scalar function ¢(u) = vVu? 4+ 1 and consider the optimization problem

mﬁinf(,@’) = %Z(ﬁ((%@ — Yi)
=1

Mark as true or false.
1.This loss function corresponds to a classification problem
2.The function ¢ is such that ¢”(u) € [0,1] for all u.
3.The function f is convex.
4.The function f is strongly convex
5.The function f is smooth

6.The function fis = Y% | ||z;]|*—smooth

Ex. 2 — Let A a symmetric, positive d x d matrix, b a vector of size d and define
1
Flw) = 5 tw, Aw) + (b, )

We consider the iterates of gradient descent with a step size of, starting form w° = 0.
wt+1 —wt — atvf(wt)

1.We take of that minimizes f(w'*!). What is the value of (Vf(w'*!), Vf(w?))?
2.What is the step size that minimizes f(w!*!)?

3.We take for all ¢ the step size ol that minimizes f(w!*!). With that choice of step
size, does gradient descent converges to the solution in a finite number of iterations 7

4.Is there a sequence of step sizes of such that gradient descent converges in d + 1

iterations 7



Ex. 3 — Consider the problem given by

1
w* € arg min f(w) = — i(w), 1
g i, () = 3 ) (1
where f; is L-smooth for ¢ = 1,...,n,. We assume that f is y—strongly convex, let w* its

minimizer, and suppose that we have for all i, V f;(w*) = 0.
The iterates of the SGD (stochastic gradient descent) method with constant step size are
given by

wt = wt — aV i, (wh), (2)
where o > 0 is the step size and i; € {1,...,n} is chosen i.i.d with uniform probability at
each iteration.

1.Show that we have for all w:
IV fi(w)|| < Ljjw — w*|
2.Demonstrate
E;, [[lw*! — w*|?] < (1 - 2ap + o2L?)||w’ — w*|?

where the expectation is taken with respect to the random index #;. Hint: you can
show that for all w, we have (V f(w),w — w*) > pllw — w*|?.

3.What is the value of o that gives the fastest convergence rate 7 What type of bound
on |Jw! — w*||* do we get?

4.What convergence regime do you get 7 Is this surprising considering the behavior of
SGD seen in class? Comment.

Ex. 4 — Welet f: RP — R. Coordinate descent tries to minimize f alternatively with
respect to individual coordinates.
We denote w' the iterates. At iteration ¢, we chose an index i € {1,...,p} and try to
minimize f with respect to w! without changing the other coordinates wﬁ., j # i. More
formally, we define ¢;(x,w) = f(wr,..., wi—1,%, wi+1,wp,) and set at each iteration:

wf+1

= arg min ¢;(z,w’) and w!™! = w§» for j #i
x

J
The index 4 is typically chosen as cyclic : i = 1+ (¢ mod p). Therefore , at iteration 1,
the coordinate 1 is updated, at iteration 2, the coordinate 2 is updated, ... , at iteration p

the coordinate p is updated and at iteration p + 1 the coordinate 1 is modified again.

1 Assume that f is the quadratic function:

Flw) = 3w, Aw) — (b,w)

Compute the update rule to minimize ¢;.



2 At iteration ¢ + 1, we update the coordinate i. Demonstrate that

(Aw' — b)? (Aw! — b)f

t+1 ty _
Flt*h) = fut) = 5 < SR

where A0 = max; A

3 At iteration ¢, the coordinate that is updated is i such that (Aw’ — b)? is maximal.
Show that

¢ 2
t+1y ty < _HAw =0
Ft) = fut) < — 5
4 Let w* = A~'b. Demonstrate that ||Aw — b||? > 20min(A)(f(w) — f(w*)).
Provide a convergence rate for the coordinate descent method. What is the difference with

gradient descent 7 When is it faster, or slower? Hint: what is the link between A4, and
Omax(A)?



