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1 Introduction

Consider the problem
1 n
w” € argmin (n ;in(w) = f(ﬂ))) : (1)
where we assume that f(w) is py—strongly quasi-convex
* * IJ/ *
Fw™) = fw) + (" —w, VF(w)) + 5w —w?, (2)
and each f; is convex and L;—smooth
Lz‘ 2 .
fitw +h) < fi(w) +(Vfi(w), h) + |[Al", fori=1,....n. (3)
Here we will provide a modern proof of the convergence of the SGD algorithm
1
wt = w — 'V, (w'), where i; ~ e (4)
The result we will prove is given in the following theorem.

Theorem 1.1. Assume f is u-quasi-strongly convex and the f;’s are convex and L;—smooth. Let

Lmax = maxX;=1,...n Lz and let
n

def 1 N
ol = Z;HVfi(w )12 (5)
i=1
Choose 7 =~ € (0, ﬁ] for all ¢. Then the iterates of SGD given by (4) satisfy:
Eflw’ — w*|2 < (1 —yp)° lu’ — w2 + 2. (6)

2 Proof of Theorem 1.1

We will now give a modern proof of the convergance of SGD.



Ex. 1 — Let E;[/] iy [-|w'] and consider the tth iteration of the SGD method (4). Show that

E, [V, (w))] = Vf(u).

def

Ex. 2 — Let E;[] = E[-|w'] be the expectation conditioned on w'. Using a step of SGD (4)
show that
* * * - 1
Ey [l —w*P] = Jlw’ —w*|? =2y (0 —w*, V(') +92) ~IVA@HIE (@)
i=1

Ex. 3 — Now we need to bound the term Y 1" ; 1||V f;(w")||* to continue the proof. We break
this into the following steps.

Part 1

Using that each f; is Ly—smooth and convex and using Lemma A.l in the appendix show that

n

Z QnIL,;vai(w) — Vw3 < flw)— flw"). 9)

i=1
Hint: Remember that V f(w*) = 0.
Now let Lyax = max;—1,.., L; and conlude that

- 1 * *
> IVfiw) = VA@IE < 2Lmax(f(w) = fw"). (10)
i=1
Part 11
Using (10) and Definition 5 show that

n

Z%vai(w)HQ < 4Lmax(f(w) = f(w")) + 20 (11)

=1

Ex. 4 — Using (11) together with (7) and the strong quasi-convexity (2) of f(w) show that
Ee (o™ —wl?] < (1= py)llw’ = w|* + 29(2yLmax — 1)(f(w') = f(w")) +20%%. (15)

Ex. 5 — Using that v € (0
the recurrence.

, ﬁ] conclude the proof by taking expectation again, and unrolling

Ex. 6 — BONUS importance sampling: Let i; ~ p; in the SGD update (4), where p; > 0 are
probabilities with Y ; p; = 1. What should the p;’s be so that SGD has the fastest convergence?

3 Decreasing step-sizes

Based on Theorem 1.1 we can introduce a decreasing stepsize.



Theorem 3.1 (Decreasing stepsizes). Let f be u—strongly quasi-convex and each f; be L;—smooth

and convex. Let K & Lyax/ 1 and

5 Lrlnax for t <A4[K]
7= (18)
% for ¢>4[K].

If ¢ > 4[], then SGD iterates given by (4) satisfy:

E||lw® — w*

(19)

Proof. Let 4 def (f:f)%u and let t* be an integer that satisfies v« < 5 Linax' In particular this holds

for
t* > [4K —1].

Note that v, is decreasing in ¢t and consequently ~; < ﬁ for all ¢ > t*. This in turn guarantees
that (6) holds for all ¢ > t* with ; in place of v, that is

/2
(t+1)2
Multiplying both sides by (¢ + 1)? we obtain

202 (2t + 1)?
E|rt)? + 5 2
P+ = 1) (20)

EHTtJrlHQ <

202 /2t +1\2
WMMWWStMM%”('+)
1

2 \t+1
8 2
< PE|P+ 22
1
where the second inequality holds because 2%’11 < 2. Rearranging and summing from j = ¢*...¢
we obtain: , | | L g2
oG+ DPEIPE = FEIIP] < =5 (21)
= j=i= I
Using telescopic cancellation gives
. 8o (t — t*
¢+ DB < (el 2+ S
Dividing the above by (¢ + 1)? gives
t*)? . 8o (t —t*)
Elrt 2 < g2y 82 EZ0) 22
I < I I (22
For ¢t < t* we have that (6) holds, which combined with (22), gives
t*)2 M t*
El-A+H12 < ( 1— 012
< G (et ) I
2 *)2
o )

3



Choosing ¢* that minimizes the second line of the above gives t* = 4[K]|, which when inserted
into (23) becomes

16[/C)2 1\ 4K
B < g (1 5e) IR
o* 8(t - 2[K])
p?o(t+1)?
16[K]?
T eA(t+1)?

0% 8

o2, 9°
I + T g

where we have used that (1 — i)% < e 2 for all x > 1. ]

A Appendix: Auxiliary smooth and convex lemma

As a consequence of the f;’s being smooth and convex we have that f is also smooth and convex.
In particular f is convex since it is a convex combination of the f;’s. This gives us the following
useful lemma.

Lemma A.1. If f is both L-smooth

£(2) < Fw) + (V5 (w), =~ w) + 2]z~ wl} (25)
and convex
f(2) 2 fly) + (V) z—v), (26)
then we have that
F) ~ fw) < (V@) —w) — 5= IVF6) ~ Vw)IB, (27)
Proof. To prove (27), it follows that
fy)=flw) = fly) = fz)+ f(z) = f(w)
(26)+(25)

< (VI — )+ (V)2 — )+

To get the tightest upper bound on the right hand side, we can minimize the right hand side in z,
which gives

1
z=w— 2 (Vf(w) = V[(y)). (28)
Substituting this in gives

F) - 1) = (V- wt (V) - 1)
(VT (w), V() ~ V1)) + 5V w) ~ V)3
= (VW) —w) — 7195w~ V@R + 57 IV Fw) ~ V)3

— (Vf@).y—w) - 5L IV W) - VI O



