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Constraints and Lagrangian

Optimization problem

min
x∈Rn

F (x)

with hj(x) = 0 ∀j = 1, . . . , p
and gi(x) ≤ 0 ∀i = 1, . . . , q.

(1)

I F is convex and differentiable, hj and gi are differentiable and define convex
constraints.

Lagragian of the optimization problem

We define the Lagrangian of the problem the function L such that :

L(x,u,v) = F (x) +
k∑

i=1

uigi(x) +
m∑

j=1

vjhj(x) (2)

where u ∈ Rk and v ∈ Rm are the Lagrange multipliers of dual variables, with ui ≥ 0
(positivity constraints).
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Lagrange dual function

Lagrange dual function

The Lagrange dual function D of the problem is

D(u,v) = inf
x
L(x,u,v) (3)

I If F is not bounded below, D = −∞.

I D is always concave (even when F is non-convex)

Lower bound
For all u ≥ 0,v and feasible x we have

F (x) ≥ L(x,u,v) ≥ D(u,v)

Proof:

L(x,u,v) = F (x) +
k∑

i=1

uigi(x)︸ ︷︷ ︸
≤0

+
m∑

j=1

vjhj(x)︸ ︷︷ ︸
=0

≤ F (x)

because x feasible (gi(x) ≤ 0, hj(x) = 0) and u ≥ 0.
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Exercise 1: Lagrange dual

min
x,x≥0

F (x) = (x− 1)2

1. Express the Lagrangian of the problem above :

L(x, u) =

(x− 1)2 − ux

2. Solve the infimum w.r.t. x for a given dual variable u:

x? =

1 +
u

2

3. Express the Lagrange Dual function D(u):

D(u) =

− u2

4
− u

Check that the function is concave
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Lagrange Duality

Primal problem

min
x∈Rn

F (x)

with hj(x) = 0 ∀j = 1, . . . , p
and gi(x) ≤ 0 ∀i = 1, . . . , q.

I Optimal value F ? = F (x?).

Dual problem

max
u∈Rq,v∈Rp

D(u,v)

with u ≥ 0

I The dual function is a lower bound on the optimal value of the primal.

I The dual problem is always convex.

I If an optimal value D? is reached then we have what is called weak duality with

F ? ≥ D?
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Duality Gap and Strong duality

Definition
For a feasible primal variable x and feasible dual variables u,v we call duality gap the
following positive value

F (x)−D(u,v) ≥ 0 (4)

I One property of the duality gap is that

F (x)− F ? ≤ F (x)−D(u,v)

I If the duality gap is 0 for a feasible triplet x?,u?,v? then x? is optimal for the
primal and u?,v? are optimal for the dual problem.

I If F ? = D? the problem is said to have strong duality .

I Slater’s constraint qualification: if the primal problem is convex and there exists
a feasible solution :

∃x ∈ Rn, hj(x) = 0, gi(x) ≤ 0 ∀i, j

then strong duality holds.
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Karush-Kuhn-Tucker (KKT) conditions

Optimization problems and Lagrangian

min
x∈Rn

F (x)

with hj(x) = 0 ∀j = 1, . . . , p
and gi(x) ≤ 0 ∀i = 1, . . . , q.

max
u∈Rq,v∈Rp

D(u,v)

with u ≥ 0

L(x,u,v) = f(x) +
k∑

i=1

uigi(x) +
m∑

j=1

vjhj(x), with u ≥ 0

Karush-Kuhn-Tucker (KKT) conditions

1. ∇xF (x) +
∑
i ui∇xgi(x) +

∑
j vj∇xhj(x) = 0 Stationarity

2. gi(x) ≤ 0, hj(x) = 0, ∀i, ∀j Primal feasibility

3. ui ≥ 0 ∀i Dual feasibility

4. uigi(x) = 0 ∀i Complementarity
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Solution and optimality conditions

Solution of the optimization problem

For a problem with strong duality (satisfying Slater’s conditions) the two following
statements are equivalent:

I x? and u?,v? are solutions of the primal and dual problems.

I x? and u?,v? satisfy the KKT conditions.

Finding a solution (sometimes)

1. Express the Lagrangian.

2. Express the KKT conditions

3. Try to find an analytic solution for x? as function of u,v.

4. Express the dual problem and solve it if easier than primal.

5. Use KKT to recover the primal solution x?
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Exercise 2: KKT conditions

min
x

1

2
‖x‖2 subject to

n∑

i=1

xi = 1

1. Express the Lagrangian of the problem above :

L(x, v) =

1

2
‖x‖2 + v(

n∑

i=1

xi − 1)

2. Express the KKT of the problem:

2.1

xi + v = 0, ∀i

2.2

∑n
i=1 xi − 1 = 0

2.3 None
2.4 None

3. Deduce from 1 and 2 above the optimal v? by maximizing D(v) then x?:

D(v) =

− nv2

2
− v

v?i =

− 1

n
,∀i

x?i =

1

n
,∀i
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Linear equality constraints

min
x∈Rn

F (x) (5)

s.t. Ax = b

I With A ∈ Rp×n defining p linearly independent constraints.

I We can eliminate the equality constraints using basic linear algebra.

{x|Ax = b} = {Fz + x̂|z ∈ Rn−p}

where x̂ is a vector satisfying Ax̂ = b and Im(F) = Ker(A).

I In Python one can compute F with scipy.linalg.null space.

I The equivalent unconstrained problem is then

min
z∈Rn−p

F (Fz + x̂) (6)

where we can recover the solution of (5) with x? = Fz? + x̂.
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Log-Barrier function

Approximating the inequality constraints

I The log-barrier function is an approximation of the characteristic function χ.

I The hard constraints can then be replaced by the log-barrier with δ > 0

min
x∈Rn

F (x)

s.t. gi(x) ≤ 0 ∀i
⇒ min

x∈Rn
F (x) +

1

δ

q∑

i=1

− log(−gi(x))
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Interior point solver

x(δ) = arg min
x∈Rn

F (x) +
1

δ

q∑

i=1

− log(−gi(x)) (7)

Interior Point algorithm

Initialize with a feasible x, and
δ > 0, µ > 1

1. x = x(δ)

2. δ = µδ

3. Go to 1. until convergence.

Properties of the algorithm

I Requires a solver for the inner problem : computing x(δ)

I Inner problem is unconstrained and smooth inside the domain.

I Converges to the solution of the constrained problem : limδ→∞ x(δ) = x?

I All iterations are inside the constraints.

I Converges provably in polynomial time for LP and QP.

More details: [Boyd and Vandenberghe, 2004, Ch.11], [Nocedal and Wright, 2006, Ch.
19]
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Linear Program (LP)
Linear program in standard form

min
x∈Rn

c>x (8)

s.t. Ax = b

x ≥ 0

I c ∈ Rn

I A ∈ Rp×n,b ∈ Rp

I Other standard forms exist

I Linear objective function

I Linear constraints

I No inequality for standard LP.

Problem as a function of Ax = b

I Underdetermined (p < d) : more variables than equations.

I Determined (p = d) : as many equations than variables, a unique solution
x? = A−1b if A invertible.

I Overdetermined (p > d) : not feasible

We look at the case where p < d.
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Linear Program (LP)

General formulation for LP

min
x∈Rn

cTx (9)

s.t. Gx ≤ h

Ax = b

I Closer formulation to the constrained optimization (1).

I A ∈ Rp×n,b ∈ Rp, and G ∈ Rq×n,h ∈ Rq.

I Most standard solvers (open source and commercial) use this formulation.

Exercise 3: Classical constraints
Express the matrices and vectors from general LP above for the following constraints:

I Positivity x ≥ 0 :

G = −In,h = 0

I Simplex {x|x ≥ 0,
∑
i xi = 1} :

A = [1, . . . , 1],b = [1],G = −In,h = 0

I Box constraints l ≤ x ≤ u:

G =

[
In
−In

]
,h =

[
u
l

]



17/48

Example of LP : Optimal Transport (OT)

Definition of the problem

I n factories produce ai, ∀i amount of goods (vector a).

I d stores need to sell sj , ∀j amount of goods ((vector s, same total as a)).

I There is a cost Ci,j of transporting a unitary amount of good from factory i to
store j.

I Find the optimal (cheapest) way to move all the goods between factories and
stores. A solution of the problem is called a transport matrix.

Optimal transport problem

min
X∈Rn×d

n,d∑

i=1,j=1

Ci,jXi,j

s.t.
∑

j

Xi,j = ai ∀i,
∑

i

Xi,j = sj ∀j

Xi,j ≥ 0 ∀i, j

I Resource allocation problem .

I Proposed by
[Kantorovich, 1942].

I Nobel prize in economy.

I Now used a lot in machine
learning.

18/48

Exercise 4: OT expressed as general LP problem
We express the matrix x as the concatenation of the rows of the matrix X:

x = [X1,1, X1,2, X1,3, . . . Xn,d−1, Xn,d]
T

The cost matrix C is also vectorized as c.

1. Express the row-wise equality constraints
∑
j xi,j = ai, ∀i and A1x = a:

A1 =

In ⊗ 11,d

The matrix can be expressed simply with the Kroenecker product ⊗
2. Express the column-wise equality constraints

∑
i xi,j = sj ,∀j and A2x = s:

A2 =

11,n ⊗ Id

3. Express all the matrices in the general LP :

A =

[
A1

A2

]
, b =

[
a
s

]

, G =

− Ind

, h =

0nd
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Reduction from general to standard problem

Reformulation to standard LP with positive variables

min
x∈Rn

cTx

s.t. Gx ≤ h

Ax = b

≡

min
x+∈Rn,x−∈Rn,x+∈Rq

cTx+ − cTx−

s.t. Gx + s = h

Ax+ −Ax− = b

x+ ≥ 0,x− ≥ 0, s ≥ 0

I We express x = x+ − x− as a difference of positive variables.

I The positive variable s ≥ 0 is used to recover an equality constraint.

I Problem on the right can be reformulated as standard LP (only equality
constraints and positivity )

I The two ”tricks” above are classical tools for reformulation.
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Primal and Dual problems

Primal LP

min
x∈Rn

c>x

s.t. Ax = b

x ≥ 0

Dual LP

max
v∈Rp

− b>v

s.t. −ATv ≤ c

Primal VS Dual

I The problem permute their variables and constraints.

I When there is strict duality (problem has a solution):

c>x? = −b>v?

I Finding x? from v? and vice versa:

1. Find which values of x? and 0 from the equality (ATv? − c)Tx? = 0.
2. Solve the linear system Ax = b for the non-zero components of x?.
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Solution of the standard LP

min
x∈Rn

c>x

s.t. Ax = b

x ≥ 0

Property of the solution

I Problem is convex but possibly has an infinite number of solution (one side of the
polytope).

I Solution x? is always on a border of the polytop describing the constraints.

I There is at most p (A ∈ Rp×n) components of x? that are non-zero.

I Those non-zeros components are called active variables.
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Robust regression with Least Absolute Deviation

min
w∈Rd

n∑

i=1

|yi − xTi w|

I More robust to outliers than least squares but also less stable
[Barrodale and Roberts, 1973].

Exercise 5: Reformulations as LP

1. Reformulate problem above as a LP with additional variables e+ ≥ 0, e− ≥ 0
such that y −Xw = e+ − e− with X = [x1, . . . ,xn]T :

min
w,e+,e−

1Tne+ + 1Tne−

s.t. Xw − y = e+ − e−

e+ ≥ 0n, e
− ≥ 0n

2. Reformulate problem above as a LP with additional variable f ≥ 0n such that
|Hx− y| ≤ f :

min
w,f

1Tn f

s.t. Xw − y ≤ f , −Xw + y ≤ f

f ≥ 0n
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L1 Support Vector Machines

min
w∈Rd

n∑

i=1

max(0, 1− yixTi w) (10)

s.t. ‖w‖1 ≤ β

I Proposed in [Zhu et al., 2004], to promote sparsity in SVM (with the L1 norm).

I Problem above can be reformulated as the following optimization problem :

min
f ,w+,w−

1Tn f

s.t. 1n − (y �X)w+ + (y �X)w− ≤ f

1Td w+ + 1Td w− ≤ β, f ≥ 0, w+ ≥ 0, w− ≥ 0

I The corresponding general LP problem with x = [w+T ,w−T , f ]T has the
following matrices:

c =




0
0
1n


 , G =




−(y �X) (y �X) −In
11,d 11,d 01,n

−Id 0d,d 0d,n
0d,d −Id 0d,n
0n,d 0n,d −In



, h =




−1n
β
0d
0d
0n



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Simplex Algorithm

Main idea behind the simplex

I Initialize with a basic feasible solution x(0) (on a vertex
or extreme point of the polytope).

I Update the solution to decrease the loss at each
iteration.

I Use the sparsity of x (add and remove active variables).

Simplex algorithm

I Invented by Dantzig around 1957.

I Solved the problem he thought was a homework exercise from his course.

I Standard algorithm for solving LP, very efficient for sparse problems but possibly
non polynomial (worst case).

I On network flow problems, the adapted network simplex is proven to be
polynomial [Orlin, 1997] (optimal transport).

I in Python : scipy.optimize.linprog(method=’simplex’)

More details: [Vanderbei et al., 2015, part 1]
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Interior point solver

Interior point method (IPM) for LP

min
x∈Rn

c>x

s.t. Gx ≤ h

⇒
min
x∈Rn

δc>x +−
q∑

i=1

log(gTi x− hi)

I Classical solver for linear programs.

I Simplex searches on the corners of the
polytope, IPM optimize inside it.

I Never against the constraints until numerical
precision is achieved.

I Polynomial complexity for LP (better than
simplex in theory).

I In Python: scipy.optimize.linprog

More details: [Boyd and Vandenberghe, 2004, Chapter 11], [Vanderbei et al., 2015,
Part 3], [Nocedal and Wright, 2006, Chapter 14]
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Solving a Linear Program

Simplex and variants

I Exact solutions.

I Can be slow of large problems.

I Use it on structured graph flow.

Interior point problem

I Better at early stopping.

I Usually faster on large problems.

I Most commercial solvers.

LP solvers in Python

I Scipy : scipy.optimize.linprog function (both simplex and interior points)

I cvxopt : Interior point solver for standard problems + wrapper for commercial
solvers and GLPK [Vandenberghe, 2010].

I Mosek Commercial solver (free for academics) [Andersen and Andersen, 2000].

I Gurobi Commercial solver (free for academics).

I CPLEX Commercial solver (free for academics).

Benchmark available : https://github.com/stephane-caron/lpsolvers
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Quadratic Program

Optimization problem

min
x∈Rn

1

2
xTQx + cTx (11)

s.t. Gx ≤ h

Ax = b

I Q ∈ Rn× n is a symmetric positive definite matrix (convex QP).

I A ∈ Rp×n,b ∈ Rp, and G ∈ Rq×n,h ∈ Rq.

I Most standard solvers (open source and commercial) use this formulation.

Special cases

I Unconstrained : close form solution or iterative methods (Conjugate gradients)

I Box constraints l ≤ x ≤ u: projected gradient (see proximal methods).
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QP Exemple: portfolio optimization

I Model proposed by Markowitz in 1952 (Nobel Prize in economy).

I x is a portfolio of n assets (or stock).

I The price change for each asset is modeled as random variables with expected
price change p and covariance Σ.

I For a given portfolio x

I The expected gain (return) is : pTx
I The expected variance is : xTΣx

I The portfolio optimization can be expressed for a positive balance b > 0 as:

min
x∈Rn

xTΣx (12)

s.t. 1Tnx = b (13)

pTx ≥ rmin (14)

where rmin is the minimal return of the portfolio.
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Special Case : QP without constaints

min
x∈Rn

1

2
xTQx + cTx (15)

Unconstrained QP

I The gradient of the term above is ∇x = 1
2
(Q + QT )x + c

I For symmetric matrix Q a solution respects : Qx? = −c

I If Q is invertible and strictly positive definite then : x? = −Q−1c

I To solve the problem several approaches

1. Solve the linear equations : np. linalg . solve with complexityO(n3)
2. Solve the linear equations with Conjugate Gradient or other gradient descent

methods (see next course).

Exercise 6: Least Square

min
x

1

2
‖Hx− y‖2 min

x∈Rn

1

2
xTQx + cTx + λ

1

2
‖x‖2

Recover the matrices Q and c of the equivalent QP for the problems above:

Q =

HTH,

c =

−HTy,

Q =

HTH + λI,

c =

−HTy,
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Support Vector Machines (1)

Hard margin SVM [Cortes and Vapnik, 1995]

min
w,b

1

2
‖w‖2 (16)

s.t. yi(x
T
i w + b) ≥ 1

I All samples (xi, yi) must be classified well
with a margin of at least 1.

I Needs the data to be linearly separable.

I Minimizing the norm of w corresponds to
maximizing the margin 2

w
.

Soft margin SVM

min
w∈Rd,b∈R

C
∑

i

max(0, 1− yi(xTi w + b)) +
1

2
‖w‖2 (17)

I The margin constraints are relaxed with the Hinge loss.

I C is the weight of the data fitting term.

I Non differentiable convex problem.
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Support Vector Machines (2)
Primal SVM

min
w∈Rd,b∈R,z∈Rn

C
∑

i

zi +
1

2
‖w‖2 (18)

s.t. yi(x
T
i w + b) ≥ 1− zi, ∀i

z ≥ 0

I We introduce the variables zi ≥ 0 such that zi = max(0, 1− yi(xTi w + b)).

Dual SVM

min
α∈Rn

1

2
αTQα− 1Tnα (19)

s.t. yTα = 0

0n ≤ α ≤ C1n

I QP (Qi,j = yiyjx
T
i xj) with box constraints and one linear constraint.

I Primal solution can be recovered with : w? =
∑
i yiα

?
ixi.

I b? can be found on a support vector where inequality becomes equality.

I Most common formulation because allows the use of kernel for nonlinear
classification (Qi,j = yiyjk(xi,xj))
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Lasso estimator

min
w

1

2
‖Xw − y‖2 + λ

∑

i

|wi| (20)

I Classical approach to perform regression with variable selection [Tibshirani, 1996].

I Quadratic data fitting, L1 regularization term.

I Expressed either as additive term or constraint (equivalent problem).

Exercise 7: Lasso reformulation as QP

1. Reformulate the Lasso problem as a positive QP with w = w+ −w−

min
w+,w−

1

2
‖X(w+ −w−)− y‖2 + λ

∑

i

w+
i + w−i

s.t. w+ ≥ 0, w− ≥ 0

2. Express the matrices Q, c,G,h for standard QP corresponding to the problem.

Q =

[
XTX −XTX
−XTX XTX

]
,

c =

[
−XTy + λ1d
XTy + λ1d

]
,

G =

−I2d,

h =

02d
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Active set Algorithm

min
x∈Rn

1

2
xTQx + cTx

s.t. Gx ≤ h

Ax = b

Principle of active set method

I Search for the active constraints A(x?).

I If the optimal active set is known the problem is an equality constrained QP.

I QP with equality constraint can be solved with : null space + unconstrained QP.

I QP version of the simplex (search on which constraints is the solution).

I Very efficient on some problems (positivity, bloc constraints, SVM).

Active set Method (simplified)

Initialize feasible x , A(x) = {i|gTi x = hi} the active set of inequality constraints.

1. Solve subproblem with inequality constraints in A(x) forced to equality.

2. Update the active set using KKT conditions.

More details: [Nocedal and Wright, 2006, Sec. 16.5]
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Sequential Minimal Optimization (SMO)

min
α∈Rn

1

2
αTQα− 1Tnα

s.t. yTα = 0

0n ≤ α ≤ C1n

Principle of SMO

I Proposed in [Platt, 1998] to solve large scale SVM.

I Coordinate descent algorithm taking into account yTα = 0.

I The choice of the coordinates to update is sensitive.

I Sate of the art solver for SVM [Chang and Lin, 2001] also use a cache for
computing the kernel matrix.

SMO Algorithm

Initialize feasible α

1. Find two components αi and αj that violate KKT conditions.

2. Solve the QP on only those components (1D problem).
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Solving a QP

min
x∈Rn

1

2
xTQx + cTx

s.t. Gx ≤ h

Ax = b

Main Algorithms

I Interior points Efficient for large problems (commercial solvers).

I Active set General solver, an be very fast on structured problems (sparsity, SVM)

I SMO State of the art solver for SVM.

QP Solvers in Python

I Numpy (no constraints): (np. linalg . solve ornp. linalg . lstsq ).

I quadprog : Implements active set [Goldfarb and Idnani, 1983]

I cvxopt : Interior point solver for standard problems + wrapper for Mosek.

I OSQP : Operator spliting QP solver [Stellato et al., 2017].

I Mosek : Commercial solver (free for academics) [Andersen and Andersen, 2000].

I Gurobi : Commercial solver (free for academics).

Benchmark available : https://github.com/stephane-caron/qpsolvers
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Integer Programming

min
x∈Rn

F (x)

s.t. hj(x) = 0 ∀j = 1, . . . , p
gi(x) ≤ 0 ∀i = 1, . . . , q.
x ∈ Zn

(21)

I Classical optimization problem with additional integer constraints x ∈ Zn.

I Zero-one programing when variables can be only binary x ∈ {0, 1}n.

I Mixed Integer Programming (MIP) problems when only part of the variables
are integer : xi ∈ Zfori = 1, . . . , ni with ni ≤ n.

I Problem is extremely hard to solve exactly (NP complete).

Algorithms

I Continuous relaxation (and then rounding, can work well on MILP).

I Cutting Plane Algorithm (relaxation + iteratively add linear constraints).

I Branch and bound (exact method using upper and lower bounds to split the
space of solution).
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MILP and MIQP

Mixed Integer LP (MILP)

min
x∈Rn

cTx

s.t. x ≥ 0

Ax = b

xi ∈ Z, ∀i ∈ {1, . . . , ni}

Mixed Integer QP (MIQP)

min
x∈Rn

1

2
xTQx + cTx

s.t. x ≥ 0

Ax = b

xi ∈ Z, ∀i ∈ {1, . . . , ni}
I Well studied MIP problems.

I For MILP, relaxation can be exact (total unimodularity of A)

I Solved by Branch and Bound and cutting planes in general.

MIP solvers in Python

I cvxpy : General optimization (multiple wrappers) [Diamond and Boyd, 2016].

I ECOS : Embedded Conic Solver for MILP [Domahidi et al., 2013].

I Mosek : Commercial solver (free for academics) [Andersen and Andersen, 2000].

I Gurobi : Commercial solver (free for academics).
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L0 sparse regression

min
x∈Rn

1

2
‖Hx− y‖2 + λ‖x‖0

Problem above can be reformulated as a MIQP [Bourguignon et al., 2015].

I First we introduce a binary vector z ∈ {0, 1}n.

I We suppose that zi = 1 if variable xi 6= 0 else zi = 0. This means that for a big
enough M we have:

−Mz ≤ x ≤Mz

I We can express the L0 sparse regression as the following optimization problem:

min
x∈Rn,z∈Rn

1

2
x>HTHx− (HTy)Tx + λ1Tnz

s.t. −Mz ≤ x ≤Mz

z ∈ {0, 1}n

Other formulations corresponds to constrained expression but all use the ”big M”
trick.
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Quadratically Constrained QP (QCQP)
Optimization problem

min
x∈Rn

1

2
xTQ0x + cT0 x (22)

s.t. xTQix + cTi x ≤ hi, ∀i = 1, . . . ,m

Ax = b

I If Q0, . . . ,Qm are positive definite then the problem is convex and can be solved
with interior point.

I QCQP is NP-hard, it is easy to prove since a Zero-One integer program can be
cast as a QCQP with the following constraints that force xi ∈ {0, 1}:

xi(1− xi) ≥ 0 and xi(1− xi) ≤ 0

I QCQP can sometimes be solved by relaxation (Semi-definite programming or
second-order cone programming)

QCQP solvers in Python

I cvxpy : with nonconvex QCQP extension [Park and Boyd, 2017] .

I Mosek : Commercial solver (free for academics) [Andersen and Andersen, 2000].

I Gurobi : Commercial solver (free for academics).
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K-means as MIQCQP

min
x̄k,∀k

N∑

i=1

min
k
‖x̄k − xi‖2

I The argmin for each sample can be replaced by a linear term with a matrix
Z ∈ {0, 1}N,K modeling the clustering of the samples.

I We force a unique cluster selection with constraints

Z ∈ {0, 1}N,K , Z1K = 1N

I We introduce the distance variable as Di,k = ‖xi − x̄k‖2

I The optimization problem above can be expressed as

min
x̄k,∀k,Z∈RN×K ,D∈RN×K

∑

i,k

Zi,kDi,k (23)

s.t. Di,k = ‖xi − x̄k‖2, ∀i, ∀k
Z1K = 1N

Z ∈ {0, 1}N,K

Warning: Never try to solve K-means with this formulation!
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Second Order Cone Programming (SOCP)
Optimization problem

min
x∈Rn

cTx (24)

s.t. ‖Aix− bi‖2 ≤ hTi x + di, i = 1, . . . ,m

A0x = b0

I The following constraint is called a Second order cone constraint:

‖Ax− b‖2 ≤ hTx + d

I When hi = 0, ∀i the problem is a QCQP (one can square the norm).

I Other kind of cone constraints can be used (definte positive matrices).

SOCP solvers in Python

I cvxopt : Interior point solver [Vandenberghe, 2010].

I cvxpy : SOCP solver [Diamond and Boyd, 2016].

I Mosek : Commercial solver (free for academics) [Andersen and Andersen, 2000].

I Gurobi : Commercial solver (free for academics).
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Robust Support Vector Machines

min
w∈Rd,b∈R,z∈Rn

C
∑

i

zi +
1

2
‖w‖2 (25)

s.t. yi(x
T
i w + b) ≥ 1− zi + γi

∥∥∥∥Σ
1
2
i w

∥∥∥∥ , ∀i

z ≥ 0

I Proposed in [Shivaswamy et al., 2006] to handle uncertain and missing data.

I We suppose that we have uncertain data (xi, yi) and that the training sample xi
has a covariance matrix Σi to model its uncertainty.

I In this can one want to replace the hard margin constraint by a probabilistic
variant

P (yi(x
T
i w + b) ≥ 1− zi) ≥ 1− κi

were κi is small.

I When using the normal distribution on the training samples, one can recover the
optimization porblem above with γi = φ−1(κi) where φ is the normal CDF.
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Semi-Definite Programming
Optimization problem

min
X∈Sn

〈X,C〉Sn (26)

s.t. 〈X,Ai〉Sn = bi, i = 1, . . . ,m

X � 0

I Sn is the set of n× n symmeric matrices.

I 〈X,C〉Sn =
∑
i,j Xi,jCi,j is the Frobenius scalar product between matrices.

I The constraint X � 0 force X to be semi-definite positive.

I Special case of cone programming (cone of positive semi-definite matrices).

I Can be solved efficiently with interior point solver.

SDP solvers in Python

I cvxopt : Interior point solver [Vandenberghe, 2010].

I cvxpy : SDP solver [Diamond and Boyd, 2016].

I Mosek : Commercial solver (free for academics) [Andersen and Andersen, 2000].

I Gurobi : Commercial solver (free for academics).
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Conclusion

Standard Problems (properties)

I Linear or quadratic objective function.

I Linear, quadratic of conic constraints.

I Real of integer variables.

Approach

I Express the Lagrangian to find optimality conditions (KKT).

I Try to express your problem as a standard problems.

I Use generic solvers for first tests (small problems).

I Find variant of generic solver that works better for your problem.

Next part of the course

I Smooth optimization : Problems without constraints.

I Non-smooth optimization : Problems with non-smooth objectives and
constraints.
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