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Smooth Optimization problem
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Optimization problem

min
x∈Rn

F (x), (1)

I F is smooth (at least differentiable).

I When F is convex x? is a solution of the problem if

∇xF (x?) = 0

I When F is non convex x? is a local minimizer of the problem if

∇xF (x?) = 0 and ∇2
xF (x?) � 0
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Example optimization problem
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Cost function

1D Logistic regression

min
w,b

n∑

i=1

log(1 + exp(−yi(wxi + b))) + λ
w2

2

I Linear model : f(x) = wx+ b

I Training data (xi, yi) : (1,−1), (2,−1), (3, 1), (4, 1).

I Problem solution for λ = 1 : x∗ = [w?, b?] = [0.96,−2.40]

I Initialization : x(0) = [1,−0.5].

I Complexity : Cost and gradient both O(nd)
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Descent algorithm for smooth optimization

General iterative algorithm

1: Initialize x(0)

2: for k = 0, 1, 2, . . . do
3: d(k) ← Compute descent direction from x(k)

4: ρ(k) ← Choose stepsize
5: x(k+1) ← x(k) + ρ(k)d(k)

6: end for

I d(k) ∈ Rn is a descent direction if ∇F (x(k))Td(k) < 0 .

I The conditions for convergence are discussed more in details in
[Bertsekas, 1999, Nocedal and Wright, 2006].

Algorithms and variants (seen in this course)

I Steepest descent : d(k) = −∇F (x(k−1))

I Newton algorithm : d(k) = −∇H−1∇F (x(k−1))

I Quasi-Newton : d(k) = −∇Ĥ−1∇F (x(k−1)) .

I Stochastic Gradient Descent : d(k) = −∇F̂ (x(k−1))
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Gradient descent algorithm

Gradient descent algorithm (steepest descent)

1: Initialize x(0)

2: for k = 0, 1, 2, . . . do
3: d(k) ← −∇F (x(k))
4: ρ(k) ← Choose stepsize
5: x(k+1) ← x(k) + ρ(k)d(k)

6: end for

For a step small enough, each iteration decreases the cost : F (x(k+1)) ≤ F (x(k))

Convergence of gradient descent algorithm

Sufficient conditions for convergence are the Wolfe conditions:

1. F (x(k) + ρ(k)d(k)) ≤ F (x(k)) + c1ρ
(k)∇F (x(k))Td(k)

2. −∇F (x(k) + ρ(k)d(k))Td(k) ≤ −c2∇F (x(k))Td(k)

With 0 < c1 < c2 < 1 (typically c1 = 10−4, c2 = 0.9) The first condition is called the
Armijo rule and the second the curvature condition.

More details on convergence in [Nocedal and Wright, 2006, Chapter 3] and
[Bertsekas, 1999].
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Example of steepest descent
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Discussion

I Steepest descent with fixed step ρ(k) = 0.1

I Slow convergence around the solution (small gradients).

I After 1000 iterations, still not converged.

I Complexity O(nd) per iteration.
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Gradient descent as Majorization Minimization
Gradient Lispschitz function

A function F is gradient Lispchitz if there exists a constant K such that

‖∇F1(x + p)−∇F1(x)‖ ≤ K‖p‖, ∀p ∈ Rn, ∀x ∈ Rn. (2)

The constant K is called the Lipschitz constant of ∇F (and ‖∇2F (x)‖2).
Note that if F is gradient Lispchitz, we have the following second order majorization
of function F around x, also called descent Lemma:

F (x + p) ≤ F (x) + ∇F (x)Tp +
K

2
‖p‖2, ∀p ∈ Rn, ∀x ∈ Rn. (3)

Gradient descent update as majorization minimization (MM)

At iteration k we can do a majorization of F around x(k):

F (x(k) + p) ≤ F (x(k)) + ∇F (x(k))Tp +
K

2
‖p‖2

Minimizing the equation above w.r.t. p leads to

p? = − 1

K
∇F (x(k))

which corresponds exatly to an update of gradient decsent with step ρ = 1
K

.
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Linesearch methods

I For gradient Lischitz functions, a small enough step ρ(k) = 1
K

ensures a decrease
of the cost but convergence is slow.

I We would like to select the ”best” step at each iteration :

ρ?(k) = arg min
ρ

F (x(k) + ρd(k))

I In practice one seeks for a step respecting the Wolfe conditions.

I scipy.optimize.line search implements such a linesearch following
[Nocedal and Wright, 2006, Sec 3.5].

I Backtracking linesearch

Initialization of ρ and 0 < τ < 1.
repeat
ρ ← ρτ

until F (x + ρd) < F (x) + ρc1d
T∇F (x)

At the end the Armijo rule is respected, since we select the first step the respects
it, we usually suppose that the second condition is also respected.

I Note that linesearch can also be used for all gradient descent algorithms (newton,
Quasi-newton)
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Impact of line search
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Discussion

I Linesearch speedup is important w.r.t. fixed step.

I Be careful of the number of function call (necessary for linesearch).

I Complexity O(knd) per iteration where k is the nb of function call.
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Convergence of gradient descent and acceleration

Convergence speed of gradient descent

If function F is convex and differentiable and its gradient has a Lipschitz constant L,
then the gradient descent with fixed step ρ(k) = ρ ≤ 1

L
converges to a solution x? of

the optimization problem with the following speed:

F (x(k))− F (x?) ≤ ‖x
(0) − x?‖2

2ρk
(4)

I We say the the gradient descent has a convergence O( 1
k

).

I When the function is strongly convex it has a linear convergence O(e−k/κ)

I Yuri Nesterov proposed acceleration procedures for convex functions
[Nesterov, 1983, Nesterov, 2013] that has a O( 1

k2
) convergence.

Accelerated gradient descent (AGD)

1: Initialize x(0),y(0) = x(0) and ρ ≤ 1
L

2: for k = 0, 1, 2, . . . do
3: y(k) ← x(k) + k−1

k+2
(x(k) − x(k−1))

4: x(k+1) ← y(k) + ρ∇F (x(k))
5: end for

I Use momentum.

I Compute interpolated
position y.

I Do gradient update of y.
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Example of Accelerated Gradient Descent
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Discussion

I both GD and AGD use fixed step ρ(k) = 0.1.

I Acceleration speedup is important w.r.t. steepest descent step.

I The momentum due the the Nesterov acceleration can be seen in the trajectory.

I Complexity O(nd) per iteration when no line search.
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Quadratic approximation of the function

I Gradient descent is equivalent to Majorization Minimization when the function in
approximated locally by its aupper bound:

F (x + p) ≈ F (x(k)) + ∇F (x(k))Tp +
K

2
‖p‖2

I Where K is the Lipschitz constant of the gradient. K is also an upper bond on
the eigenvalues of the Hessian matrix (‖∇2F (x)‖ ≤ K).

I A better local approximation of the function is:

F (x + p) ≈ F (x(k)) + ∇F (x(k))Tp +
1

2
pTHp

where H = ∇2F (x(k)) is the Hessian matrix in x(k).

I Minimizing the approximation above w.r.t. p leads to the following solution:

p? = −H−1∇F (x(k))

I Note that the approximation above is not a majorization so the update may not
decrease the loss.
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Newton Method

Algorithm of the Newton method

1: Initialize x(0)

2: for k = 0, 1, 2, . . . do
3: g(k),H(k) ← Compute gradient ∇F (x(k)) and Hessian matrix ∇2F (x(k))
4: p(k) ← Solve linear system H(k)p = −g(k).
5: x(k+1) ← x(k) + p(k)

6: end for

I Requires the resolution of a size d linear system at each iteration (O(d3)).

I Newton method has a quadratic O(e−2k ) convergence speed.

I Can also be used with linesearch to ensure cost decrease.

I If F is quadratic, convergence un 1 iteration.

I Levenberg-Marquardt Modification : use H̃ = H + λI

I Allows to interpolate between Newton (λ = 0) and gradient descent with small
step (large λ).
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Example of Newton method
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Discussion

I No linesearch, step is 1.

I Very fast convergence (converged in 4 iterations).

I When initial point is far from the solution firsts steps can increase the cost.

I Complexity O(nd+ d3) per iteration when no line search.
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Quasi-Newton and BFGS
Quasi Newton method [Dennis and Moré, 1977]

1: Initialize x(0), B̂(0) = σI
2: for k = 0, 1, 2, . . . do
3: p(k) ← −ρ(k)B(k)∇F (x(k)) with ρ(k) satisfying the Wolfe conditions.
4: x(k+1) ← x(k) + p(k)

5: y(k) ←∇F (x(k+1))−∇F (x(k))
6: B(k+1) ← Update B(k) using previous gradients y(k) and step p(k).
7: end for

I The problem with Newton: Solving the linear equations is O(d3)

I Principle: estimate and update an inverse matrix approximation B with efficient
O(d2) updates (Sherman-Morrison formula).

I Most common update strategy is BFGS (Broyden–Fletcher–Goldfarb–Shanno):

B(k+1) =

(
I− pyT

yTp

)
B(k)

(
I− ypT

yTp

)
+

ppT

yTp

where p and y are expressed without the (k) index.

I Other update strategy include : Broyden, SFP, SR1

I Convergence speed is super-linear (faster than GD, slower than Newton).

I Implemented in scipy.optimize.minimize with method=’BFGS’. 18/31

Example of BFGS
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Discussion

I Very fast convergence (converged in 11 iterations, VS 4 for Newton).

I First step is Steepest descent (because B(0) = σI)

I Complexity O(nd+ d2) per iteration when no line search.
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Limited Memory BFGS (L-BFGS)

L-BFGS method [Liu and Nocedal, 1989]

I The problem with BFGS: the inverse hessian matrix B is O(n2) in memory.

I Limited Memory BFGS only store the last m ≤ d updates of B (p and y).

I Usually m < 10 so memory complexity is O(d).

I Compute the descent direction B(k)∇F (x(k)) recursively.

I Considered one of the most efficient solver for optimization problems maximizing
entropy [Malouf, 2002] (our example).

I Implemented in scipy.optimize.minimize with method=’L-BFGS-B’.

L-BFGS variants

I L-BFGS-B [Zhu et al., 1997] : Allows to solve smooth optimization problem with
box constraints (implemented in scipy)

I OWL-QN [Andrew and Gao, 2007] : A variant of L-BFGS dedicated to solve
smooth problems with L1 regularization.
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Example of L-BFGS
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Discussion

I Very fast convergence (nearly as fast as BFGS).

I But requires linesearch.

I First step is Steepest descent (because B(0) = σI).

I Complexity O(nd+md) per iteration when no line search.
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Optimization in machine learning

Optimization problem

min
w∈Rd

F (w) =
1

n

n∑

i=1

fi(w) (5)

I Standard ML problem (supervised or unsupervised learning).

I d is the number of parameter in the model, n the number of training samples.

I Can handle both ERM and regularized learning:

I Empirical Risk Minimization : fi(w) = (yi − xTi w)2

I Regularization : fi(w) = (yi − xTi w)2 + λ
2
‖w‖2

I Gradient of F is: ∇wF (w) = 1
n

∑n
i=1∇wfi(w)

Large sale optimization

I Both n and d can be very large.

I Computation of F and ∇F is O(nd).

I Dataset may not fit in memory.

⇒ Stochastic Gradient Descent.
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Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) algorithm

1: Initialize x(0)

2: for k = 0, 1, 2, . . . do
3: i(k) ← randomly pick an index i ∈ {1, . . . , n}
4: d(k) ← −∇xfi(k)(x(k))
5: x(k+1) ← x(k) + ρ(k)d(k)

6: end for

I d(k) ∈ Rn is an approximation of the full gradient.

I Iteration complexity is O(d) VS O(nd) for GD.

I Polyak-Ruppert averaging : x̄(k) = 1
k+1

∑k
u=0 x

(u)

I Convergence speed (e.g. ρ(k) = 1√
k

) [Nemirovski et al., 2009]

E[F (x̄(k))− F (x?)] =

{
O( 1√

k
) for F convex

O( 1
k

) for F strongly convex

I A function F is strongly convex if : ∇2F (x) � l for l > 0.
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Example of stochastic gradient descent
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Discussion

I Decreasing step size : ρ(k) = 1√
k

I Slow convergence (especially x̄(k) )

I One GD iter ≡ 4 SGD iter (since n = 4).

I Complexity O(d) per iteration.
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Accelerated stochastic gradients

Stochastic Average Gradient (SAG) [Roux et al., 2012]

1: Initialize x(0),yi = 0 ∀i
2: for k = 0, 1, 2, . . . do
3: i(k) ← randomly pick an index i ∈ {1, . . . , n}
4: yi(k) ← ∇xfi(k)(x)
5: d(k) ← − 1

n

∑
i yi

6: x(k+1) ← x(k) + ρ(k)d(k)

7: end for

I Keep in memory all previous computed gradients y, update only for sample i(k).

I Iteration is O(d), memory space is O(nd) (same size as data).

I Convergence speed [Roux et al., 2012]

E[F (x̄(k))− F (x?)] =

{
O( 1

k
) for F convex

O(e−Ck) for F strongly convex

Other accelerations

I Stochastic Variance Reduced Gradient (SVRG) : [Johnson and Zhang, 2013]

I SAGA: Better constant than SAG + proximal operators [Defazio et al., 2014]
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Example of Stochastic Average Gradient (SAG)
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Discussion

I Constant step size : ρ(k) = 0.1

I Fast convergence because the problem is strongly convex..

I One GD iter ≡ 4 SGD iter (since n = 4).

I SAG complexity O(d) per iteration (but O(nd) in memory).
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SGD in machine learning

Large scale optimization

I Used for training linear and non-linear models on very large datasets.

I Sate of the art algorithm for linear SVM, logistic regression, least square.

I Use minibatches (compute stochastic gradient on multiple samples).

I Classification (SVM,Logistic) : sklearn.linear model.SGDClassifier.

I Regression (lesta square, huber) : sklearn.linear model.SGDRegressor.

Training Neural Networks with SGD

I Usually use fixed step (against theory).

I Use early stopping as regularization (avoid overfitting).

I Works very well on continuous, nonconvex problems but not very well understood.

I Several momentum averaging and adaptive step size strategies:

I RMSPROP [Tieleman and Hinton, 2012].
I Adaptive gradient step ADAGRAD [Duchi et al., 2011].
I Adaptive Moment estimation ADAM [Kingma and Ba, 2014].
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Example convergence of GD methods
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Discussion

I Comparison of all methods as a function of computational time.

I Rank of methods (fastest left):

BFGS ≈ Newton ≈ L-BFGS < SAG < AGD < SGD < GD

I Very small dataset, so SGD/SAG do not have an advantage (n = 4, d = 2).

28/31

Running time complexity of GD methods

Method Iteration Convergence Running time

GD nd 1/k dn/ε
AGD nd 1/k2 dn/

√
ε

Newton nd2 + d3 exp(−2k) d(nd+ d2) log log(1/ε)
BFGS nd+ d2 < exp(−k) < d(n+ d) log(1/ε)
L-BFGS nd+md < exp(−k) < d(n+m) log(1/ε)

SGD d 1/
√
k d/ε2

SAG d 1/k d
√
n/ε

I For a convex function F , with K Lisphitz gradients.

I Running time for reaching ε optimality is provided.

I When F is l strongly convex we have the following running times:

I GD : O(dnc log(1/ε))
I AGD : O(dn

√
c log(1/ε))

I SGD : O(dc log(1/ε))
I SAG : O(d(n+ c) log(1/ε))

with c = K
l

the condition number of the problem and ∇2F (x) � l.
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