Optimization for machine learning

Nonsmooth optimization

R. Flamary		:
June 4, 2020		
	1/20	
Course overview		N
Introduction to numerical optimization	4	O
Constrained Optimization and Standard Optimization problems	4	
Smooth optimization	4	
Non-smooth optimization Proximal methods Proximal operator	4 6	
Forward Backward Splitting ADMM and Primal Dual Algorithm Conditional Gradient CG/Frank-Wolfe Algorithm Convergence and certificate	14	O

Conclusion

Full course overview

1.	 Introduction to numerical optimization 1.1 Optimization problem formulation and principles 1.2 Properties of optimization problems 1.3 Machine learning as an optimization problem 	
2.	 Constrained Optimization and Standard Optimization problems 2.1 Constraints, Lagrangian and KKT 2.2 Linear Program (LP) 2.3 Quadratic Program (QP) 2.4 Other Classical problems (MIP,QCQP,SOCP,SDP) 	
3.	 Smooth Optimization 3.1 Gradient descent 3.2 Newton, quasi-Newton and Limited memory 3.3 Stochastic Gradient Descent 	
4.	Non-smooth Optimization4.1 Proximal operator and proximal methods4.2 Conditional gradient	
5.	 Conclusion 5.1 Other approaches (Coordinate descent, DC programming) 5.2 Optimization problem decision tree 5.3 References an toolboxes 	

T

Optimization	problem
--------------	---------

- $\min_{\mathbf{x}\in\mathbb{R}^n} F(\mathbf{x}),$ (1)
- \blacktriangleright F is convex, proper, lower semi-continuous can be non smooth, non continuous.
- Can be constrained optimization with $F(\mathbf{x}) = f(\mathbf{x}) + \chi_{\mathcal{C}}(\mathbf{x})$.
- General strategy : use the structure of *F*, find fast iterations.

ptimization strategies

- Subgradient descent: slower than GD $(O(\frac{1}{\sqrt{k}}))$, used for training NN.
- Proximal Splitting : divide an conquer strategy, can be accelerated.
- Projected Gradient Descent : special case of proximal splitting.
- ► Conditional Gradient : Use a linearization of *F*.

17

Optimization problem in machine learning

Regularized machine learning

$$\min_{\mathbf{x}\in\mathbb{R}^d} \quad f(\mathbf{x}) + g(\mathbf{x}) \tag{2}$$

- \blacktriangleright f is the data fitting term, g the regularization term.
- Usually f is smooth (K Lipschitz gradient).
- \blacktriangleright g can be non-smooth for instance Lasso regularization.
- One can use proximal splitting to solve the problem.

Data fiting examples

Regularization examples

 $g(\mathbf{x}) = \frac{\lambda}{2} \sum_{k} x_k^2$

Logistic regression:

Ridge

$$f(\mathbf{x}) = \sum_{i} (y_i - \mathbf{h}_i^T \mathbf{x})^2$$

Lasso

Examples of proximal operators

- Proximal operators in 1D.
- Both |x| and $|x|^{\frac{1}{2}}$ promote sparsity (soft thresholds).
- A number of regularization terms are separable:

$$g(\mathbf{x}) = \sum_{k} w(x_k)$$

Proximal operator

Definition [Bauschke et al., 2011]

The Proximity (or proximal) operator of a function g is:

$$\begin{aligned} \mathbf{prox}_g : \mathbb{R}^n &\longrightarrow \mathbb{R}^n \\ \mathbf{x} &\longmapsto \mathbf{prox}_g(\mathbf{x}) = \arg\min_{\mathbf{u} \in \mathbb{R}^n} \ g(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^2. \end{aligned}$$

Returns a vector minimizing g but close to x in the L2 sens.

 πn

Essential building block of proximal splitting method.

Common proximal operators

$$\begin{array}{ll} g(\mathbf{x}) = 0 & \mathbf{prox}_g(\mathbf{x}) = \mathbf{x} & \text{identity} \\ g(\mathbf{x}) = \lambda \|\mathbf{x}\|_2^2 & \mathbf{prox}_g(\mathbf{x}) = \frac{1}{1+\lambda}\mathbf{x} & \text{scaling} \\ g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1 & \mathbf{prox}_g(\mathbf{x}) = \text{sign}(\mathbf{x}) \max(0, |\mathbf{x}| - \lambda) & \text{soft shrinkage} \\ g(\mathbf{x}) = \lambda \|\mathbf{x}\|_{1/2}^{1/2} & [\text{Xu et al., 2012, Equation 11}] & \text{power family} \\ g(\mathbf{x}) = \chi_C(\mathbf{x}) & \mathbf{prox}_g(\mathbf{x}) = \underset{\mathbf{u} \in C}{\operatorname{argmin}} \ \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^2 & \text{orthogonal projection.} \end{array}$$

6/20

8/20

Forward Backward Splitting (FBS)

$$\min_{\mathbf{x}\in\mathbb{R}^d} \quad f(\mathbf{x}) + g(\mathbf{x})$$

FBS algorithm [Combettes and Pesquet, 2011] [Parikh and Boyd, 2014]

 $\begin{array}{ll} & \text{1: Initialize } \mathbf{x}^{(0)} \\ & \text{2: for } k = 0, 1, 2, \dots \text{ do} \\ & \text{3: } \mathbf{d}^{(k)} \leftarrow -\nabla f(\mathbf{x}^{(k)}) \\ & \text{4: } \mathbf{x}^{(k+1)} \leftarrow \mathbf{prox}_{\rho^{(k)}g}(\mathbf{x}^{(k)} + \rho^{(k)}\mathbf{d}^{(k)}) \\ & \text{5: end for} \end{array}$

- One gradient step w.r.t. f and one proximal step w.r.t. g.
- Efficient when the proximal operator is simple to compute (closed form).
- Convergence for a K Lischitz gradient function is $O(\frac{1}{k})$.
- \blacktriangleright FBS can be generalized to several functions in F [Combettes and Pesquet, 2011]

FBS as Majorization Minimization

Since f is K gradient Lipschitz F can be bounded by:

$$F(\mathbf{x}) \le f(\mathbf{x}^{(k)}) + \nabla f(\mathbf{x}^{(k)})^t (\mathbf{x} - \mathbf{x}^{(k)}) + \frac{K}{2} \|\mathbf{x} - \mathbf{x}^{(k)}\|^2 + g(\mathbf{x}),$$
(3)

• Minimizing the upper bound above is computing $\mathbf{prox}_{\frac{1}{K}g}(\mathbf{x}^{(k)} - \frac{1}{K}\nabla f(\mathbf{x}^{(k)}))$

FBS Acceleration

FBS with Nesterov acceleration [Beck and Teboulle, 2009]

$$\begin{split} &1: \text{ Initialize } \mathbf{y}^{(1)} = \mathbf{x}^{(0)}, t^{(1)} = 1 \\ &2: \text{ for } k = 1, 2, \dots \text{ do} \\ &3: \quad \mathbf{x}^{(k)} \leftarrow \mathbf{prox}_{\rho^{(k)}g}(\mathbf{y}^{(k)} - \rho^{(k)}\nabla f(\mathbf{y}^{(k)})) \\ &4: \quad t^{(k+1)} \leftarrow \frac{1+\sqrt{1+4(t^{(k)})^2}}{2} \\ &5: \quad \mathbf{y}^{(k+1)} \leftarrow \mathbf{x}^{(k)} + \frac{t^{(k)} - 1}{t^{(k+1)}}(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}) \\ &6: \text{ end for } \end{split}$$

- Use a similar momentum to accelerated gradient.
- Convergence in value is $O(\frac{1}{k^2})$.
- The function might not decrease at each iteration due to the momentum.

Adaptive step [Goldstein et al., 2014]

Compute the step $\rho^{(k)}$ with the Barzilai-Borwein rule [Barzilai and Borwein, 1988]:

$$\rho_s = \frac{\Delta \mathbf{x}^T \Delta \mathbf{x}}{\Delta \mathbf{x}^T \Delta \mathbf{g}} \quad \text{ and } \quad \rho_m = \frac{\Delta \mathbf{x}^T \Delta \mathbf{g}}{\Delta \mathbf{g}^T \Delta \mathbf{g}}$$

With $\Delta \mathbf{x} = \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}$ and $\Delta \mathbf{g} = \nabla f(\mathbf{y}^{(k)})) - \nabla f(\mathbf{y}^{(k-1)}))$. This corresponds to estimate locally the Hessian matrix as $\sigma \mathbf{I}$.

Alternating Direction Method of Multipliers (ADMM)

Optimization problem and augmented Lagrangian

$$\min_{\mathbf{x} \in \mathbb{R}^n, \mathbf{z} \in \mathbb{R}^m} \quad f(\mathbf{x}) + g(\mathbf{z})$$
s.t. $\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} = \mathbf{c}$

The augmented Lagrangian of the problem is expressed as:

$$L_{\rho}(\mathbf{x}, \mathbf{z}, \mathbf{y}) = f(\mathbf{x}) + g(\mathbf{z}) + \mathbf{y}^{T}(\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} - \mathbf{c}) + \frac{\rho}{2} \|\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} - \mathbf{c}\|^{2}$$
(5)

ADMM Algorithm [Boyd et al., 2011]

1: Initialize $\mathbf{x}^{(0)}, \mathbf{z}^{(0)}, \mathbf{y}^{(0)}, \rho > 0$ 2: for k = 1, 2, ... do 3: $\mathbf{x}^{(k+1)} \leftarrow \arg\min_{\mathbf{x}} L_{\rho}(\mathbf{x}, \mathbf{z}^{(k)}, \mathbf{y}^{(k)})$ 4: $\mathbf{z}^{(k+1)} \leftarrow \arg\min_{\mathbf{z}} L_{\rho}(\mathbf{x}^{(k+1)}, \mathbf{z}, \mathbf{y}^{(k)})$ 5: $\mathbf{y}^{(k+1)} \leftarrow \mathbf{y}^{(k)} + \rho(\mathbf{A}\mathbf{x}^{(k+1)} + \mathbf{B}\mathbf{z}^{(k+1)} - \mathbf{c})$ 6: end for

- Updates 3 and 4 can often be expressed as proximal updates.
- When f or g is separable, the updates can be done in parallel.

Exercise 1: solving the Lasso with FBS

$$\min_{\mathbf{x} \in \mathbb{R}^d} \quad \frac{1}{2} \|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2 + \lambda \sum_k |x_k|$$

1. Express the smooth function f and non-smooth functions g for the problem above

$$f(\mathbf{x}) = g(\mathbf{x}) =$$

2. Compute the gradient $\nabla f(\mathbf{x})$ and express the proximal of g.

 $\nabla f(\mathbf{x}) = \mathbf{prox}_{q}(\mathbf{x}) =$

3. Express the FBS algorithm in Python/Numpy for solving the lasso with a fixed step rho :

10/20

Primal-Dual Algorithms

Douglas-Rachford Splitting

$$\begin{split} \min_{\mathbf{x} \in \mathbb{R}^n} & f(\mathbf{x}) + g(\mathbf{x}) \\ 1: \text{ Initialize } \mathbf{x}^{(0)}, \mathbf{y}^{(0)}, \rho > 0 \\ 2: \text{ for } k = 1, 2, \dots \text{ do} \\ 3: & \mathbf{x}^{(k+1)} \leftarrow \mathbf{prox}_f(\mathbf{y}^{(k)}) \\ 4: & \mathbf{y}^{(k+1)} \leftarrow \mathbf{y}^{(k)} + \mathbf{prox}_g(2\mathbf{x}^{(k+1)} - \mathbf{y}^{(k)})) - \mathbf{x}^{(k+1)} \\ 5: \text{ end for} \end{split}$$

Chambole-Pock [Chambolle and Pock, 2011]

$$\min_{\mathbf{x}\in\mathbb{R}^n} \quad f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})$$

Both f and g are convex, their proximal can be computed efficiently.

Vu-Conda Algorithm [Vũ, 2013, Condat, 2014]

$$\min_{\mathbf{x}} \quad f(\mathbf{x}) + g(\mathbf{x}) + h(\mathbf{A}\mathbf{x})$$

- ▶ f convex with K Lipschitz gradients.
- g and h are convex and have "simple" proximity operators.

9/20

(4)

Example: Total Variation denoising

$$\min_{\mathbf{X} \in \mathbb{R}_{+}^{d \times d}} \quad \|\mathbf{Y} - \mathbf{X}\|_{F}^{2} + \lambda \left(\sum_{i=1,j=1}^{d,d-1} |X_{i,j} - X_{i,j+1}| + \sum_{i=1,j=1}^{d-1,d} |X_{i,j} - X_{i+1,j}| \right)$$

- Image Y is supposed to be noisy. We want to recover a clean X that has piecewise constant parts.
- The regularization term measure the total variation (2D gradients) of the image horizontally and vertically.
- The optimization problem can be expressed as:

$$\min_{\mathbf{x}} f(\mathbf{x}) + g(\mathbf{x}) + h(\mathbf{A}\mathbf{x})$$

It can be solved using ADMM, Chambole-Pock or Vu-Conda.

Conditional Gradient method

 $\min_{\mathbf{x}\in\mathcal{C}} \quad F(\mathbf{x})$

Algorithm

```
1: Initialize \mathbf{x}^{(0)} \in C

2: for k = 0, 1, 2, ... do

3: \mathbf{s}^{(k)} \leftarrow \arg\min_{\mathbf{s}} \mathbf{s}^T \nabla F(\mathbf{x}^{(k)}), s.t. \mathbf{s} \in C

4: \rho^{(k)} \leftarrow \text{compute step size } \rho \in [0, 1]

5: \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \rho^{(k)}(\mathbf{s}^{(k)} - \mathbf{x}^{(k)})
```

6: end for

- Proposed in [Frank and Wolfe, 1956] to solve Quadratic Programs.
- Also known as the Frank-Wolfe algorithm.
- \blacktriangleright When C correspond to linear constraints each iteration is a LP.
- The step $\rho^{(k)}$ can be either decreasing or estimated via linesearch:

$$\rho^{(k)} = \frac{2}{k+2} \qquad \text{or} \qquad \rho^{(k)} = \operatorname*{argmin}_{\rho \in [0,1]} F(\mathbf{x}^{(k)} + \rho(\mathbf{s}^{(k)} - \mathbf{x}^{(k)}))$$

▶ Reintroduced in ML recently [Jaggi, 2013].

Image courtesy of Martin Jaggi

14/20

 $f(\boldsymbol{x})$

Exercise 2: CG for Lasso with constraints

$$\min_{\mathbf{x} \in \mathbb{R}^d} \quad \frac{1}{2} \|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2$$

s.t. $\|\mathbf{x}\|_1 \le \tau$

1. Find the solution for the following optimization problem:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \quad \mathbf{x}^T \mathbf{g}, \qquad \text{s.t.} \quad \|\mathbf{x}\|_1 \leq \tau$$

 $x_i^{\star} =$

2. Code in Python/Numpy a solver using the decreasing step.

CG convergence and certificate

Lower bound on the optimal value

Since *F* is convex one has:

$$\begin{split} F(\mathbf{x}^{\star}) &\geq F(\mathbf{x}) + (\mathbf{x}^{\star} - \mathbf{x})^{T} \nabla F(\mathbf{x}) \\ &\geq \min_{\mathbf{y} \in \mathcal{C}} \left\{ F(\mathbf{x}) + (\mathbf{y} - \mathbf{x})^{T} \nabla F(\mathbf{x}) \right\} \\ &= F(\mathbf{x}) + \mathbf{x}^{T} \nabla F(\mathbf{x}) + \min_{\mathbf{y} \in \mathcal{C}} \mathbf{y}^{T} \nabla F(\mathbf{x}) \end{split}$$

This lower bound can be computed at each iteration as :

$$F(\mathbf{x}^{(k)}) + (\mathbf{s}^{(k)} - \mathbf{x}^{(k)})^T \nabla F(\mathbf{x}^{(k)})$$

Certificate and convergence

From the bound above we have the following certificate:

$$l_k \le F(\mathbf{x}^{\star}) \le F(\mathbf{x}^{(k)})$$
 with $l_k = \max(l_k - 1, F(\mathbf{x}^{(k)}) + (\mathbf{s}^{(k)} - \mathbf{x}^{(k)})^T \nabla F(\mathbf{x}^{(k)}))$

- Converges to the optimal value in $O(\frac{1}{k})$ [Jaggi, 2013].
- Also converges when F is smooth and non-convex [Lacoste-Julien, 2016].

Conclusion

Proximal methods [Parikh and Boyd, 2014]

- General strategy of proximal splitting: divide and conquer the objective function.
- Search for a stationary point, avoid subgradients.
- FBS for simple problems, ADMM or other Primal/Dual approaches for more complex splitting.
- Very efficient when proximal have a closed form.
- For sparse optimization, intermediate iterates are sparse.
- Works also for non-convex problems [Attouch et al., 2010].

Conditional Gradient

- Solve iteratively linearization of the function under constraints.
- Very efficient if the linearized problem has a closed form.
- Can be extended with linearization of only one part of the function [Bredies et al., 2009]

References II

[Bredies et al., 2009] Bredies, K., Lorenz, D. A., and Maass, P. (2009). A generalized conditional gradient method and its connection to an iterative shrinkage method.

Computational Optimization and Applications, 42(2):173–193.

[Chambolle and Pock, 2011] Chambolle, A. and Pock, T. (2011). A first-order primal-dual algorithm for convex problems with applications to imaging. *Journal of mathematical imaging and vision*, 40(1):120–145.

[Combettes and Pesquet, 2011] Combettes, P. L. and Pesquet, J.-C. (2011).

Proximal splitting methods in signal processing.

In *Fixed-point algorithms for inverse problems in science and engineering*, pages 185–212. Springer.

[Condat, 2014] Condat, L. (2014).

A generic proximal algorithm for convex optimization—application to total variation minimization.

IEEE Signal Processing Letters, 21(8):985–989.

[Frank and Wolfe, 1956] Frank, M. and Wolfe, P. (1956).

An algorithm for quadratic programming. Naval research logistics quarterly, 3(1-2):95–110.

References I

- [Attouch et al., 2010] Attouch, H., Bolte, J., Redont, P., and Soubeyran, A. (2010).
 Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the kurdyka-Lojasiewicz inequality.
 Mathematics of Operations Research, 35(2):438–457.
- [Barzilai and Borwein, 1988] Barzilai, J. and Borwein, J. M. (1988). Two-point step size gradient methods. IMA Journal of Numerical Analysis, 8(1):141–148.
- [Bauschke et al., 2011] Bauschke, H. H., Combettes, P. L., et al. (2011). Convex analysis and monotone operator theory in Hilbert spaces, volume 408. Springer.
- [Beck and Teboulle, 2009] Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM journal on imaging sciences*, 2(1):183–202.
- [Boyd et al., 2011] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine learning, 3(1):1–122.

17/20

References III

- [Goldstein et al., 2014] Goldstein, T., Studer, C., and Baraniuk, R. (2014). A field guide to forward-backward splitting with a fasta implementation. *arXiv preprint arXiv:1411.3406*.
- [Jaggi, 2013] Jaggi, M. (2013).
 Revisiting frank-wolfe: Projection-free sparse convex optimization.
 In Proceedings of the 30th international conference on machine learning, number CONF, pages 427–435.
 [Lacoste-Julien, 2016] Lacoste-Julien, S. (2016).

Convergence rate of frank-wolfe for non-convex objectives arXiv preprint arXiv:1607.00345.

[Parikh and Boyd, 2014] Parikh, N. and Boyd, S. P. (2014). Proximal algorithms. Foundations and Trends in optimization, 1(3):127–239.

 [Vũ, 2013] Vũ, B. C. (2013).
 A splitting algorithm for dual monotone inclusions involving cocoercive operators. Advances in Computational Mathematics, 38(3):667–681.

[Xu et al., 2012] Xu, Z., Chang, X., Xu, F., and Zhang, H. (2012). $L_{1/2}$ regularization: a thresholding representation theory and a fast solver. Neural Networks and Learning Systems, IEEE Transactions on, 23(7):1013–1027