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Nonsmooth optimization

Optimization problem

min
x∈Rn

F (x), (1)

I F is convex, proper, lower semi-continuous can be non smooth, non continuous.

I Can be constrained optimization with F (x) = f(x) + χC(x).

I General strategy : use the structure of F , find fast iterations.

Optimization strategies

I Subgradient descent: slower than GD (O( 1√
k

)), used for training NN.

I Proximal Splitting : divide an conquer strategy, can be accelerated.

I Projected Gradient Descent : special case of proximal splitting.

I Conditional Gradient : Use a linearization of F .
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Optimization problem in machine learning
Regularized machine learning

min
x∈Rd

f(x) + g(x) (2)

I f is the data fitting term, g the regularization term.

I Usually f is smooth (K Lipschitz gradient).

I g can be non-smooth for instance Lasso regularization.

I One can use proximal splitting to solve the problem.

Data fiting examples

I Least square:

f(x) =
∑

i

(yi − hTi x)2

I Logistic regression:

f(x) =
∑

i

log(1+exp(−yihTi x))

Regularization examples

I Ridge

g(x) =
λ

2

∑

k

x2k

I Lasso

g(x) = λ
∑

k

|xk|
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Proximal operator

Definition [Bauschke et al., 2011]

The Proximity (or proximal) operator of a function g is:

proxg : Rn −→ Rn

x 7−→ proxg(x) = arg min
u∈Rn

g(u) + 1
2
‖u− x‖2.

I Returns a vector minimizing g but close to x in the L2 sens.

I Essential building block of proximal splitting method.

Common proximal operators

g(x) = 0 proxg(x) = x identity
g(x) = λ‖x‖22 proxg(x) = 1

1+λ
x scaling

g(x) = λ‖x‖1 proxg(x) = sign(x) max(0, |x| − λ) soft shrinkage

g(x) = λ‖x‖1/21/2 [Xu et al., 2012, Equation 11] power family

g(x) = χC(x) proxg(x) = argmin
u∈C

1
2
‖u− x‖2 orthogonal projection.

7/20

Examples of proximal operators
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Proximity operator proxω(x)

I Proximal operators in 1D.

I Both |x| and |x| 12 promote sparsity (soft thresholds).

I A number of regularization terms are separable:

g(x) =
∑

k

w(xk)
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Forward Backward Splitting (FBS)

min
x∈Rd

f(x) + g(x)

FBS algorithm [Combettes and Pesquet, 2011] [Parikh and Boyd, 2014]

1: Initialize x(0)

2: for k = 0, 1, 2, . . . do
3: d(k) ← −∇f(x(k))
4: x(k+1) ← proxρ(k)g(x

(k) + ρ(k)d(k))
5: end for

I One gradient step w.r.t. f and one proximal step w.r.t. g.

I Efficient when the proximal operator is simple to compute (closed form).

I Convergence for a K Lischitz gradient function is O( 1
k

).

I FBS can be generalized to several functions in F [Combettes and Pesquet, 2011]

FBS as Majorization Minimization

I Since f is K gradient Lipschitz F can be bounded by:

F (x) ≤ f(x(k)) + ∇f(x(k))t(x− x(k)) +
K

2
‖x− x(k)‖2 + g(x), (3)

I Minimizing the upper bound above is computing prox 1
K
g(x

(k) − 1
K
∇f(x(k)))
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FBS Acceleration

FBS with Nesterov acceleration [Beck and Teboulle, 2009]

1: Initialize y(1) = x(0), t(1) = 1
2: for k = 1, 2, . . . do
3: x(k) ← proxρ(k)g(y

(k) − ρ(k)∇f(y(k)))

4: t(k+1) ← 1+
√

1+4(t(k))2

2

5: y(k+1) ← x(k) + t(k)−1

t(k+1) (x(k) − x(k−1))
6: end for

I Use a similar momentum to accelerated gradient.

I Convergence in value is O( 1
k2

).

I The function might not decrease at each iteration due to the momentum.

Adaptive step [Goldstein et al., 2014]

Compute the step ρ(k) with the Barzilai-Borwein rule [Barzilai and Borwein, 1988]:

ρs =
∆xT∆x

∆xT∆g
and ρm =

∆xT∆g

∆gT∆g

With ∆x = x(k) − x(k−1) and ∆g = ∇f(y(k)))−∇f(y(k−1))). This corresponds to
estimate locally the Hessian matrix as σI.
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Exercise 1: solving the Lasso with FBS

min
x∈Rd

1

2
‖Hx− y‖2 + λ

∑

k

|xk|

1. Express the smooth function f and non-smooth functions g for the problem above

f(x) =

1

2
‖Hx− y‖2

g(x) =

λ
∑

k

|xk|

2. Compute the gradient ∇f(x) and express the proximal of g.

∇f(x) =

HT (Hx− y)

proxg(x) =

sign(x) max(0, |x| − λ)

3. Express the FBS algorithm in Python/Numpy for solving the lasso with a fixed
step rho :
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Alternating Direction Method of Multipliers
(ADMM)

Optimization problem and augmented Lagrangian

min
x∈Rn,z∈Rm

f(x) + g(z) (4)

s.t. Ax + Bz = c

The augmented Lagrangian of the problem is expressed as:

Lρ(x, z,y) = f(x) + g(z) + yT (Ax + Bz− c) +
ρ

2
‖Ax + Bz− c‖2 (5)

ADMM Algorithm [Boyd et al., 2011]

1: Initialize x(0), z(0),y(0), ρ > 0
2: for k = 1, 2, . . . do
3: x(k+1) ← arg minx Lρ(x, z

(k),y(k))
4: z(k+1) ← arg minz Lρ(x

(k+1), z,y(k))
5: y(k+1) ← y(k) + ρ(Ax(k+1) + Bz(k+1) − c)
6: end for

I Updates 3 and 4 can often be expressed as proximal updates.

I When f or g is separable, the updates can be done in parallel.
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Primal-Dual Algorithms

Douglas-Rachford Splitting

min
x∈Rn

f(x) + g(x)

1: Initialize x(0),y(0), ρ > 0
2: for k = 1, 2, . . . do
3: x(k+1) ← proxf (y(k))

4: y(k+1) ← y(k) + proxg(2x
(k+1) − y(k)))− x(k+1)

5: end for

Chambole-Pock [Chambolle and Pock, 2011]

min
x∈Rn

f(Ax) + g(x)

Both f and g are convex, their proximal can be computed efficiently.

Vu-Conda Algorithm [Vũ, 2013, Condat, 2014]

min
x

f(x) + g(x) + h(Ax)

I f convex with K Lipschitz gradients.

I g and h are convex and have ”simple” proximity operators.
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Example: Total Variation denoising

min
X∈Rd×d

+

‖Y −X‖2F + λ

(
d,d−1∑

i=1,j=1

|Xi,j −Xi,j+1|+
d−1,d∑

i=1,j=1

|Xi,j −Xi+1,j |
)

I Image Y is supposed to be noisy. We want to recover a clean X that has
piecewise constant parts.

I The regularization term measure the total variation (2D gradients) of the image
horizontally and vertically.

I The optimization problem can be expressed as:

min
x
f(x) + g(x) + h(Ax)

I It can be solved using ADMM, Chambole-Pock or Vu-Conda.
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Conditional Gradient method

min
x∈C

F (x)

Algorithm

1: Initialize x(0) ∈ C
2: for k = 0, 1, 2, . . . do
3: s(k) ← arg mins s

T∇F (x(k)), s.t. s ∈ C
4: ρ(k) ← compute step size ρ ∈ [0, 1]
5: x(k+1) = x(k) + ρ(k)(s(k) − x(k))
6: end for

I Proposed in [Frank and Wolfe, 1956] to solve Quadratic Programs.

I Also known as the Frank-Wolfe algorithm.

I When C correspond to linear constraints each iteration is a LP.

I The step ρ(k) can be either decreasing or estimated via linesearch:

ρ(k) =
2

k + 2
or ρ(k) = argmin

ρ∈[0,1]
F (x(k) + ρ(s(k) − x(k)))

I Reintroduced in ML recently [Jaggi, 2013].

Image courtesy of Martin Jaggi
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CG convergence and certificate
Lower bound on the optimal value

I Since F is convex one has:

F (x?) ≥ F (x) + (x? − x)T∇F (x)

≥ min
y∈C

{
F (x) + (y − x)T∇F (x)

}

= F (x) + xT∇F (x) + min
y∈C

yT∇F (x)

I This lower bound can be computed at each iteration as :

F (x(k)) + (s(k) − x(k))T∇F (x(k))

Certificate and convergence

I From the bound above we have the following certificate:

lk ≤ F (x?) ≤ F (x(k)) with lk = max(lk−1, F (x(k))+(s(k)−x(k))T∇F (x(k)))

I Converges to the optimal value in O( 1
k

) [Jaggi, 2013] .

I Also converges when F is smooth and non-convex [Lacoste-Julien, 2016].
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Exercise 2: CG for Lasso with constraints

min
x∈Rd

1

2
‖Hx− y‖2

s.t. ‖x‖1 ≤ τ

1. Find the solution for the following optimization problem:

min
x∈Rd

xTg, s.t. ‖x‖1 ≤ τ

x?i =

{
−sign(gi)τ if i = arg maxi |gi|
0 if not

2. Code in Python/Numpy a solver using the decreasing step.
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Conclusion

Proximal methods [Parikh and Boyd, 2014]

I General strategy of proximal splitting: divide and conquer the objective function.

I Search for a stationary point, avoid subgradients.

I FBS for simple problems, ADMM or other Primal/Dual approaches for more
complex splitting.

I Very efficient when proximal have a closed form.

I For sparse optimization, intermediate iterates are sparse.

I Works also for non-convex problems [Attouch et al., 2010].

Conditional Gradient

I Solve iteratively linearization of the function under constraints.

I Very efficient if the linearized problem has a closed form.

I Can be extended with linearization of only one part of the function
[Bredies et al., 2009]

18/20

References I

[Attouch et al., 2010] Attouch, H., Bolte, J., Redont, P., and Soubeyran, A. (2010).

Proximal alternating minimization and projection methods for nonconvex problems: An
approach based on the kurdyka-Lojasiewicz inequality.

Mathematics of Operations Research, 35(2):438–457.

[Barzilai and Borwein, 1988] Barzilai, J. and Borwein, J. M. (1988).

Two-point step size gradient methods.

IMA Journal of Numerical Analysis, 8(1):141–148.

[Bauschke et al., 2011] Bauschke, H. H., Combettes, P. L., et al. (2011).

Convex analysis and monotone operator theory in Hilbert spaces, volume 408.

Springer.

[Beck and Teboulle, 2009] Beck, A. and Teboulle, M. (2009).

A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

SIAM journal on imaging sciences, 2(1):183–202.

[Boyd et al., 2011] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. (2011).

Distributed optimization and statistical learning via the alternating direction method of
multipliers.

Foundations and Trends® in Machine learning, 3(1):1–122.

19/20

References II

[Bredies et al., 2009] Bredies, K., Lorenz, D. A., and Maass, P. (2009).

A generalized conditional gradient method and its connection to an iterative shrinkage
method.

Computational Optimization and Applications, 42(2):173–193.

[Chambolle and Pock, 2011] Chambolle, A. and Pock, T. (2011).

A first-order primal-dual algorithm for convex problems with applications to imaging.

Journal of mathematical imaging and vision, 40(1):120–145.

[Combettes and Pesquet, 2011] Combettes, P. L. and Pesquet, J.-C. (2011).

Proximal splitting methods in signal processing.

In Fixed-point algorithms for inverse problems in science and engineering, pages 185–212.
Springer.

[Condat, 2014] Condat, L. (2014).

A generic proximal algorithm for convex optimization—application to total variation
minimization.

IEEE Signal Processing Letters, 21(8):985–989.

[Frank and Wolfe, 1956] Frank, M. and Wolfe, P. (1956).

An algorithm for quadratic programming.

Naval research logistics quarterly, 3(1-2):95–110.

20/20

References III
[Goldstein et al., 2014] Goldstein, T., Studer, C., and Baraniuk, R. (2014).

A field guide to forward-backward splitting with a fasta implementation.

arXiv preprint arXiv:1411.3406.

[Jaggi, 2013] Jaggi, M. (2013).

Revisiting frank-wolfe: Projection-free sparse convex optimization.

In Proceedings of the 30th international conference on machine learning, number CONF,
pages 427–435.

[Lacoste-Julien, 2016] Lacoste-Julien, S. (2016).

Convergence rate of frank-wolfe for non-convex objectives.

arXiv preprint arXiv:1607.00345.

[Parikh and Boyd, 2014] Parikh, N. and Boyd, S. P. (2014).

Proximal algorithms.

Foundations and Trends in optimization, 1(3):127–239.
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