
Practical Session : Gradient Descent

Rémi Flamary

During the practical session you will need to use the Python numpy pylab and scipy and autograd
toolboxes. You can install autograd on conda with the following command: conda install -c

conda-forge autograd
It is recommended that you import them at the beginning of all your scripts with the following code :

import autograd.numpy as np
import pylab as pl
import autograd.scipy as sp
import autograd

Note that using autograd.numpy means that you are using numpy but the autograd toolbox can store
operations and perform automatic differentiation

1 Dataset and gradient

1.1 Dataset and illustration
• Download data file “digits.npz”.

• Load the file in memory using function np.load. The file contains the following matrices:

• x and xt: data matrix containing respectively n = 3000 and nt = 1500 trining example of
manuscript digits. Each line in those matrices is a 28×28 image stored as a transposed vector
(a line).
Some examples of the images in the training sets:

• y and yt: the labels of the images described above. they are vectors containing the classes
(1, 7, 8) of each images in x and xt.

• Use function np.reshape to reconstruct 28× 28 images. Visualize a few examples from each class
using function pl.imshow.

• Normalize the data and use the normalize data in the following (np.mean,np.std). Be careful not
to introduce NaN values.

• We want to create a binary classification problem from those 3 classes. You can first try and
discriminante class 8 VS 1 and 7. Compute a vector yb containing labels (−1, 1) for training and
ytb for testing (operator ==) .
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2 Gradient descent 2

1.2 Cost and gradient
• Compute the training matrix X by adding a column of 1 to estimate the bias.

• Code a function cost that compute the following cost for the regularized logistic regression with
labels {−1, 1} and reg = 1:

cost(α) =
n∑

i=1
log(1 + exp(−yi(xi)Tα)) + reg ∗

d∑
j=1

α2
i

Note that the xT
i are the lines from matrix X, α is of dimensionality d + 1 and αd+1 is the bias

(constant term). Test the cost function for a vector full of zeros.

• Use the function autograd.grad on the cost function to compute the gradient of the cost. Test the
gradient for a vector full of zeros and check that it provides a descent direction.

• Use the function autograd.hessian on the cost function tu compute the hessian of the cost.
Compute the Hessian matrix for a vector full of zeros. Is it positive definite?

Note that while automatic differentiation is provided by autograd and all major neural network
toolboxes (pytorch,tensorflow), the gradients and especially the Hessian can be computed on this problem
more efficiently with a few matrix product. Don’t always use autodiff when the function is simple!

2 Gradient descent

In this section you will implement some gradient descent methods and also use generic solvers from
scipy.optimize.

2.1 Gradient descent
• Code the gradient descent algorithm using the gradient function with a fixed step for 1000 iterations.
Store the cost along the iterations in a python list.

• Plot the evolution of the cost. Is there convergence? compute the norm of the gradient at the last
iteration.

• Compute the classification accuracy for the binary classification problem.

2.2 Newton descent
• Code the gradient descent algorithm using the gradient function with a fixed step for 10 iterations.
Store the cost along the iterations in a python list.

• Compare the convergence speed of the gradient descent and Newton. Compute the norm of the
gradient at the last Newton iteration.

• Compare the computational time of Newton vs Gradient Descent.

2.3 BFGS/L-BFGS
• Use the function scipy.optimize.minimize to solve the optimization problem. The default
method is the BFGS.

• Change the method to L-BFGS-B and compare the computational time.
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