Signaux et systèmes continus Applications

R. Flamary

7 décembre 2015

Filtrage Analogique

Définition

Méthode de traitement du signal continu visant à atténuer une partie du signal et à en faire ressortir une autre.

Filtrage analogique en opposition à filtrage numérique (signaux discrets).

Objectifs

- ightharpoonup Trouver un système qui transforme le signal x(t) pour en extraire l'information pertinente.
- ▶ Éliminer ou atténuer un bruit.
- ► Séparer plusieurs composantes d'un signal.

Plan du cours

Rappels signaux et systèmes

Caractérisation fréquentielle

Applications

Traitement du signal : Filtrage analogique Introduction
Synthèse de filtre
Réalisation de filtre
Bilan filtrage

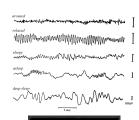
Télécommunications: Modulation

Introduction

Modulation d'amplitude Modulation de fréquence

Applications du filtrage analogique

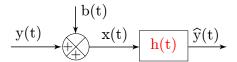
- ➤ Signaux EEG, détection de mouvement dans la bande [9-11]Hz.
- ► Tonalité, effets dans les appareils audio (equalizer, echo).
- Suspension de véhicules.
- Protection sismique.
- Éviter le repliement de spectre.
- ► Modélisation de la fonction de transfert d'un téléscope.
- ► Karaoké, Vuvuzela.





3/40

Cadre d'application : débruitage



Objectif

- \blacktriangleright Reconstruire le signal d'origine y(t) qui a été bruité par un bruit additif b(t).
- ▶ Reconstruction exacte souvent impossible.
- ightharpoonup Synthèse d'un système h(t) qui atténue l'effet du bruit en minimisant son effet sur le signal d'origine.

$$\hat{y}(t) = \underbrace{h * b(t)}_{\approx 0} + \underbrace{h * y(t)}_{\approx v(t)}$$

5 / 40

Filtrage et bande passante

Gain et Atténuation

▶ Pour caractériser un filtre on peut utiliser sa représentation Gain/Phase (Diagramme de Bode).

$$G_{DB}(w) = 20\log_{10}(|H(w)|)$$
 et $\Phi(w) = Arg(H(w))$

lackbox On utilise également l'atténuation $A(w) = -G_{DB}(w)$

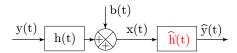
Bande passante

La bande passante est l'ensemble des fréquences telles que le Gain du filtre est supérieur à une référence (en général on prend -3dB).

Bande passante à -3dB:

$$BP = \left\{ w | 20 \log \left(\frac{|H(w)|}{\max(|H(w)|)} \right) \ge -3 \right\}$$

Cadre d'application : déconvolution



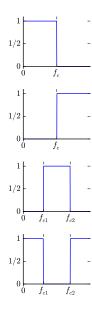
Objectif

- Reconstruire le signal d'origine y(t) qui a été convolué puis bruité par un bruit additif b(t).
- > Synthèse d'un système $\hat{h}(t)^{-1}$ qui annule la convolution en limitant l'effet du bruit.

$$\hat{y}(t) = \underbrace{\hat{h}^{-1} * b(t)}_{\approx 0} + \underbrace{h * \hat{h}^{-1} * y(t)}_{\approx y(t)}$$

▶ Problème beaucoup plus difficile que le débruitage car le système $h^{-1}(t)$ qui annule la convolution peut ne pas exister (pas l'objet de ce cours).

Type de Filtres



- Passe bas Filtre le plus commun, coupe les hautes fréquences. $BP = [O, f_c]$ avec f_c fréquence de coupure (w_c pulsation).
- Passe haut Coupe les basses fréquences f_c . $BP = [f_c, \infty]$
- Passe bande Laisse passer les composantes de fréquence comprises entre les deux fréquences de coupures. $BP = [f_{c_1}, f_{c_2}]$
- Coupe bande Laisse passer les composantes de fréquence à l'extérieur des deux fréquences de coupures. $BP = [0, f_{c_1}] \cup [f_{c_2}, \infty]$

Notion de distorsion

Transmision sans distorsion

Un système est considéré sans distorsion si

Avec

$$y(t) = Cx(t - t_0)$$

- ▶ C un gain constant.
- ▶ $t_0 > 0$ est un délai.

Un système sans distorsion a donc une TF de la forme

$$H(w) = \frac{X(w)}{Y(w)} =$$

$$\quad \text{et} \quad h(t) =$$

Avec

- ightharpoonup |H(w)| = C sinon distorsion d'amplitude.
- ▶ $Arg(H(w)) = -wt_0$ sinon distorsion de phase.

On remarque que la phase du système varie linéairement avec la fréquence.

Filtre passe-bas idéal

Définition

- Le filtre idéal est un objet théorique.
- ▶ Utilisable lorsque les spectres du signal et du bruit ne se recouvrent pas (signal basse fréquence).
- ▶ La fonction de transfert du filtre est

$$H(f) = \begin{cases} 1 & \text{si } |f| < f_c \\ 0 & \text{sinon} \end{cases}$$

où f_c est la fréquence de coupure.

► La réponse impulsionnelle du filtre est

$$h(t) =$$

Filtre physiquement réalisable

- ▶ Un filtre physiquement réalisable est causal et stable
- Filtre idéal non causal, ne pouvant pas être implémenté en pratique.

Notion de distorsion (2)

Distorsion de phase

Soit le système de fonction de transfert

$$H(w) = |H(w)|e^{j\phi(w)}$$

On en déduit donc que

$$x(t) = \cos(\omega t)$$

$$y(t) = |H(\omega)|\cos(\omega t + \phi(\omega)) = |H(\omega)|\cos(\omega(t + \phi(\omega)/\omega))$$

Pour que le retard $\phi(\omega)/\omega$ aussi appelé **temps de propagation** ne dépende pas de la fréquence il faut donc

$$\frac{\phi(\omega)}{\omega} = cte = \tau \quad \to \quad \phi(\omega) = \omega\tau$$

Temps de propagation de groupe

En pratique, on utilise le temps de propagation de groupe $\tau=\frac{d\phi(\omega)}{d\omega}$ sur la bande passante du filtre.

10 / 40

Réalisation de filtre en pratique

La réalisation d'un filtre analogique nécessite plusieurs étapes.

1. Caractérisation du filtre

Gabarit qui définit les contraintes du filtre (bande passante, gain).

2. Synthèse du filtre

9 / 40

Recherche de la fonction de transfert qui répond au gabarit (ordre le plus faible possible).

3. Réalisation du filtre

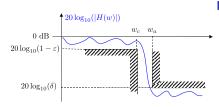
Recherche des composants électroniques élémentaire qui permettent d'obtenir la fonction de transfert voulue (R,C,L et ampli op pour filtrage actif) .

Caractérisation de filtre

Filtre réel

- Les filtres idéaux ne sont pas réalisables en pratique.
- ▶ On cherche donc une approximation de ces filtres.
- L'approximation est caractérisée par un Gabarit

Gabarit d'un filtre



Paramètres:

- ► Bande passante *BP* et la bande rejetée
- Ondulations autorisées :
 - \triangleright ε en bande passante
 - $ightharpoonup \delta$ en bande atténuée

La gabarit définit la zone autorisée pour la fonction de transfert (compromis).

Exemple de Synthèse de filtre

- ► Application interface cerveau-machine.
- ▶ Signal intéressant $\approx 12 \text{Hz}$ ($w_s = 2\pi * 12$).
- ▶ Bruit EDF à 50Hz ($w_{edf} = 2\pi * 50$).
- lacktriangle Deux signaux de faible puissance $P_s=P_b$.
- ▶ Atténuation max du signal 3dB.
- Filtrage par un système du premier ordre.
- ► Fonction de transfert premier ordre

$$H(w) = \frac{1}{1 + j\frac{w}{w_0}}$$

▶ Gain en Db

13 / 40

15 / 40

$$G(w) =$$

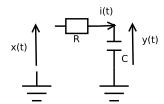
 $\mathsf{R}_{S/B} = 10\log_{10}\left(\frac{P_s}{P_b}\right) =$

▶ Après filtrage : $R_{S/B} = G(w_s) - G(w_{edf})$

▶ Choix de w_0 ?

Exemple de Synthèse de filtre

- $R_{S/B} = G(w_s) G(w_{edf})$
- ▶ Tracer le $R_{S/B}$ en fonction de w_0 .
- ► Pour quelle valeur le rapport est-il maximum?

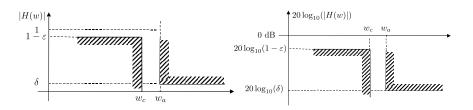


Choix que w_0

- ▶ On ne doit pas atténuer le signal de plus de -3dB $\rightarrow w_s \leq w_0 \leq \infty$.
- ightharpoonup Pour $w_0=w_{edf}
 ightharpoonup R_{S/B}=$
- ▶ Pour $w_0 = (w_{edf} + w_s)/2 =$ $\rightarrow R_{S/B} =$
- ightharpoonup Pour $w_0=w_s o R_{S/B}=$

On choisit donc $w_0=w_c$ car c'est ce qui colle le plus au gabarit et maximise le RSB.

Fonctions d'approximation et filtre passe bas



Gabarit pour un filtre passe bas

- ▶ Bande passante (BP) : $1 \varepsilon \le |H(w)| \le 1$ pour $w < w_p$
 - w_p : pulsation passante.
 - ε : paramètre de tolérance en BP ($\varepsilon=1/2 \to -3dB$).
- ▶ Bande atténuée (BA) : $|H(w)| \le \delta$ pour $w > w_a$
 - w_a : pulsation d'atténuation.
 - lacksquare δ : paramètre de tolérance en BA.
- $w_a w_c$ est la bande de transition.

Fonctions d'approximation et filtre passe bas (2)

- ▶ On cherche une fonction d'approximation qui respecte la gabarit est globalement un problème d'optimisation sous contrainte.
- ▶ On cherche donc la fonction qui minimise un critère (maximise SNR).
- ▶ Deux critères additionnels sont communément utilisés :

Réponse en fréquence la plus plate possible

- ightharpoonup Soit |H(w)| le module de la réponse en fréquence d'un filtre passe-bas d'ordre k.
- Le module |H(w)| est le plus plat possible (maximally flat) si à son origine (w=0) les dérivées K^{ieme} sont nulles

$$\frac{d^K|H(w)|}{dw^K} = 0$$

Amplitude des oscillations

Le filtre est dit à amplitude equiripple si les oscillations dans la bande passante sont d'amplitude constantes.

Filtre de Butterworth (2)

- Le filtre de Butterworth est monotone décroissant sur tout le spectre.
- L'amplitude de la fonction de transfert peut se mettre sous la forme

$$|H(w)| = 1 - \frac{1}{2} \left(\frac{w}{w_c}\right)^{2n} + \frac{3}{8} \left(\frac{w}{w_c}\right)^{4n} - \frac{5}{16} \left(\frac{w}{w_c}\right)^{6n} + \dots$$

- ▶ On voit donc que sa dérivée est nulle en zéro jusqu'à l'ordre k = 2n 1.
- ▶ La fonction de transfert d'un filtre de Butterworth est de la forme

$$B_N(w) = \frac{1}{P_N(w)}$$

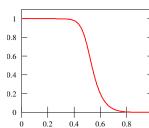
où $P_R(N)$ est un polynôme de butterworth que l'on peut obtenir à partir de:

Ordre	Polynôme
1	1+jw
2	$(jw)^2 + \sqrt{2}jw + 1$
3	$(jw+1)((jw)^2+jw+1)$
4	$((jw)^2 + 0.7654jw + 1)((jw)^2 + 1.8478jw + 1)$

Filtre de Butterworth (1)

- ▶ Les Filtres de Butterworth sont des filtres maximally flat.
- L'amplitude de la fonction de transfert peut se mettre sous la forme

$$|H(w)| = \frac{1}{\sqrt{1 + \left(\frac{w}{w_c}\right)^{2n}}} \tag{1}$$



- avec
 - n : ordre du filtre.
 - w_c: fréquence de coupure.

Les pulsation passante w_p et atténuée w_a sont :

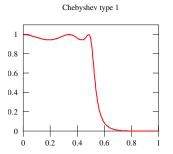
Pour
$$|H(w)| = 1 - \varepsilon$$

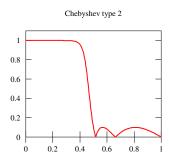
Pour
$$|H(w)| = \delta$$

$$w_p =$$

$$w_a =$$

Filtre de Tchebychev





- ▶ Filtre oscillant dans la bande passante (type 1) ou dans la bande atténuée (type 2).
- ▶ Filtre de type equiripple qui réduit la bande de transition en acceptant les oscillations.
- Amplitude de la fonction de transfert :

$$|H(w)| = \frac{1}{\sqrt{1 + \varepsilon^2 T_n^2 \left(\frac{w}{w_c}\right)}}$$

17 / 40

Tranformation de filtres

On peut transformer un filtre passe bas en passe-haut, passe-bande, coupe-bande en remplacant jw dans la fonction de transfert.

Passe-bas avec fréquence de coupure w_c

$$jw \rightarrow \frac{jw}{w_c}$$

 $\blacktriangleright w_c$: pulsation de coupure

Passe-haut

$$jw \rightarrow \frac{w_c}{jw}$$

 $\blacktriangleright w_c$: pulsation de coupure

Passe-bande

$$jw \rightarrow \frac{w_0}{B} \frac{\left(\frac{jw}{w_0}\right)^2 + 1}{\frac{jw}{w_0}}$$

• $w_0 = \sqrt{w_1 w_2}$: pulsation centrale • $B = w_2 - w_1$: bande passante

•
$$B = w_2 - w_1$$
 : bande passante

Coupe-bande

$$jw \rightarrow \frac{B}{w_0} \frac{\frac{jw}{w_0}}{\left(\frac{jw}{w_0}\right)^2 + 1}$$
 $\blacktriangleright w_0 = \sqrt{w_1 w_2}$: pulsation centrale $\blacktriangleright B = w_2 - w_1$: bande passante

$$lackbox{\textbf{B}}=w_2-w_1$$
 : bande passante

21 / 40

22 / 40

Filtres passifs (1)

Exemple de filtre

- Application interface cerveau-machine.
- $w_0 = w_s = 2\pi * 12$
- $\blacktriangleright w_0 = \frac{1}{RC} \to RC =$
- ightharpoonup Choix pour R et C?
- ► Contraintes de prix.

Tranformation de filtre

- ▶ Transformation similaire à celle effectuée sur les FT.
- ▶ passe-bas → passe-haut

$$1/jCw \rightarrow jLw$$
 et $jLw \rightarrow 1/jCw$

ightharpoonup passe-bande

$$1/jCw \rightarrow B/C(jw+1/jw)$$
 et $jLw \rightarrow L/B/(jw+1/jw)$

Réalisation du filtre

- ▶ Une fonction de transfert H(w) qui respecte le gabarit a été sélectionnée.
- La réalisation d'un filtre analogique consiste à trouver un circuit électrique qui permet d'obtenir la fonction de transfert voulue.

Filtre passif

- Réalisé uniquement avec des composants passifs.
- Utilisation de condensateur, bobine, résistance.
- Pas d'apport d'énergie extérieure.
- Attention à l'impédance d'entrée et de sortie du système.

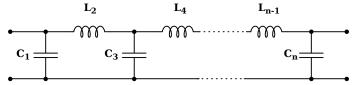
Filtre actif

- Utilisent de l'énergie extérieure.
- Mise en oeuvre à l'aide d'amplificateur opérationnel (AOP).

Filtres passifs (2)

Filtre de Butterworth

- Construction d'un circuit correspondant en utilisant la topologie de Cauer.
- ▶ Pour un filtre de $w_c = 1$ et d'ordre n on a la structure suivante :



Avec les valeurs suivantes :

- $\begin{array}{l} \blacktriangleright \ C_k = 2\sin(\frac{2k-1}{2n}\pi) \ \text{avec} \ k \ \text{impair}. \\ \blacktriangleright \ L_k = 2\sin(\frac{2k-1}{2n}\pi) \ \text{avec} \ k \ \text{pair}. \end{array}$
- ▶ Cette structure suppose que la résistance de la source et de la charge en sortie sont de 1 Ohm.

23 / 40 24 / 40

Filtres passifs (3)

Avantages

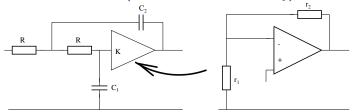
- ▶ Uniquement des composants passifs (faible coût).
- ► Pas d'alimentation nécessaire.
- ▶ Relativement facile à mettre en oeuvre.

Limitations

- ► Précision de composants.
- ▶ Pas d'amplification possible (conservation de l'énergie).
- ▶ Fonction de transfert dépend de la résistance de charge.
- ▶ Bobine jamais parfaites (résistance résiduelle, inductance mutuelle).

Filtres actifs (2)

Filtre actif du second ordre (Structure de Sallen et Key)



► Fonction de transfert

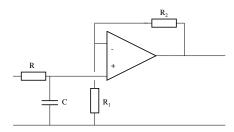
$$H(w) = \frac{K}{1 + \frac{2zjw}{w_n} + \frac{(jw)^2}{w_n^2}}$$

Avec
$$w_n=\frac{1}{R\sqrt{C_1C_2}}\quad \text{et}\quad z=\sqrt{\frac{C_1}{C_2}}\frac{3-K}{2}\quad \text{et}\quad K=\frac{r_1+r_2}{r_1}$$

lacksquare Paramètres : R, C_1, C_2, r_1, r_2

Filtres actifs (1)

Filtre actif du premier ordre



► Fonction de transfert

$$H(w) = \frac{A}{1 + \frac{jw}{w_0}}$$

26 / 40

Avec

$$A =$$
 et $w_0 =$

▶ Paramètres : R, C, R_1, R_2

Filtres actifs (3)

Avantages

25 / 40

- ► Composants à coût raisonnable.
- Les amplificateurs opérationnels ont une impédance quasi infinie.
- Possibilité d'avoir une amplification.

Limitations

- ▶ Nécessitent une alimentation (AOP).
- ▶ Excursion limitée du signal à cause de la saturation des AOP.
- ▶ Bande passante des AOP limitée (communément 100KHz max).
- ▶ Peuvent être instables (boucle dans le système).

Bilan filtrage

Description des contraintes

- ► Gabarit
- ► Temps de propagation

Synthèse

- ► Choix de la classe de filtre (Butterworth, Chebychev)
- ► Choix de l'ordre du filtre (résolution d'équations)
- ► Transformation (vers passe haut/bande)

Réalisation

- ► Choix de la structure (dépend de l'ordre, actif ou passif)
- ► Calcul des paramètres (résistances/capacité/inductance)

Définitions

Signal à transmettre

Soit x(t) un signal à transmettre aussi appelé signal modulant. Signal à bande limitée :

$$X(f) = 0$$
 pour $|f| > f_x$

Porteuse

Signal de base utilisé pour le transport de l'information. Souvent de la forme :

$$p(t) = \cos(2\pi f_p t)$$

Signal modulé y(t)

Signal à bande limitée qui peut être transporté par le medium choisi (câble, ondes électromagnétiques, fibre optique).

Démodulation

Étape inverse de la modulation. Le but est de reconstruire x(t) à partir de y(t).

Modulation

Définition

La modulation est une méthode d'encodage d'un signal pour en faciliter la transmission.

Motivations

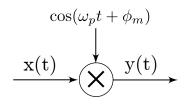
- ► La transmission du signal brut souvent peu efficace (ondes électromagnétiques).
- ► Transmission de plusieurs signaux en parallèle.
- Utilisation de la bande passante autorisée.

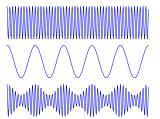
Suite du cours

- Modulation d'amplitude (interprétation dans Fourier).
- Modulation de fréquence (présentation rapide).

29 / 40

Modulation d'amplitude (1)





Définition

L'amplitude de la porteuse dépend du signal modulant x(t)

$$y(t) = A_c(1 + k_s x(t))\cos(2\pi f_p t + \phi_m)$$

- $ightharpoonup k_s$: facteur de modulation
- f_p : fréquence de la porteuse
- ϕ_m : déphasage (ajouté par la transmission).

Modulation d'amplitude (2)

Indice de modulation

► Enveloppe du signal modulé.

$$a(t) = A_c |1 + k_s x(t)|$$

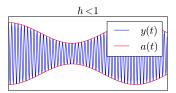
► Amplitude maximum du signal modulant :

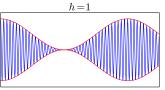
$$M_x = \max_t |x(t)|$$

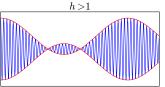
L'indice de modulation (ou taux de modulation) est définit par

$$h = k_s M_x$$

- ho h < 1: sous-modulation.
- ightharpoonup h > 1: sur-modulation.







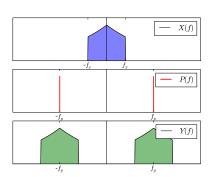
Modulation d'amplitude (3)

Interprétation dans le plan de Fourier

► Multiplication → Convolution.

$$Y(f) = X(f) * P(f)$$

- ► Le spectre du signal modulant est décalé autour de la fréquence f_p de la porteuse.
- ➤ Simple pour transmettre un signal de bande limitée.
- ► Le spectre du signal modulé est compris entre $f_p \pm f_x$.



33 / 40

34 / 40

Modulation d'amplitude (4)

Démodulation synchrone

On multiplie le signal modulé par la porteuse :

$$w(t) = y(t)\cos(2\pi f_p t + \phi_d)$$

$$= A_s(1 + k_s x(t))\cos(2\pi f_p t + \phi_m)\cos(2\pi f_p t + \phi_d)$$

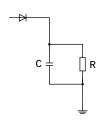
$$=$$

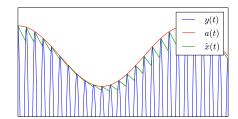
Après filtrage passe-bas et centrage on retrouve le signal estimé

$$\hat{x}(t) = \frac{A_s}{2} k_s x(t) \cos(\phi_m - \phi_d)$$

- ▶ Importance de la synchronisation, composants actifs.

Modulation d'amplitude (5)





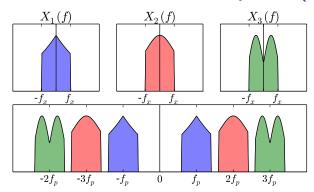
Démodulation asynchrone

- ► La démodulation synchrone nécessite des composants actifs pour la synchronisation.
- ▶ Utilisation d'un montage diode/RC pour estimer l'enveloppe du signal.
- lacktriangle Nécessite un sous-modulation car si h < 1 alors

$$a(t) = A_c |1 + k_s x(t)| = A_c + A_c k_s x(t)$$

▶ Attention à la puissance nécessaire pour le transfert.

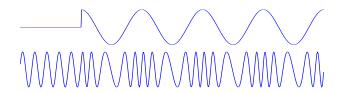
Applications de la modulation d'amplitude (1)



Multiplexage par division fréquentielle

- ▶ Multiplexage : transmission de plusieurs signaux en parallèle.
- ► Chaque signal est de bande limitée.
- lacktriangle Utilisation de fréquence de f_p différentes pour chaque signaux.
- ▶ Si $\Delta f_p > 2f_x$ alors pas de recouvrement de spectre.
- ► Transmission de signaux sans perte.

Modulation de fréquence (1)



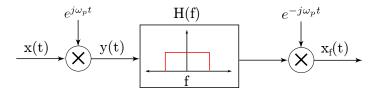
Définition

La modulation de fréquence consiste à modifier la fréquence de la porteuse par rapport à x(t). Le signal modulé est de la forme :

$$y(t) = \cos\left(2\pi \int_0^t f(\tau)d\tau\right)$$

- $f(t) = f_p + f_{\Delta} x(t)$ est la fréquence instantanée du signal.
 - ▶ Si x(t) = 0 alors on retrouve la porteuse.
 - $\blacktriangleright x(t) \neq 0$ alors la fréquence instantanée va être modifiée par x(t)
- f_{Δ} est la déviation en fréquence (équivalent de k_s en AM).

Applications de la modulation d'amplitude (2)



Filtre passe bande à fréquence centrale variable

- Filtre très utile par exemple en radio.
- ▶ 3 étapes :
 - 1. Multiplication par une exponentielle complexe (décalage du spectre).
 - 2. Filtre passe-bas.
 - 3. Multiplication par une exponentielle complexe conjuguée (recalage).
- La fréquence de l'exponentielle complexe permet de régler la fréquence centrale du filtre passe bande.

38 / 40

37 / 40

Modulation de fréquence (2)

Propriétés de la Modulation de fréquence

- ▶ Plus robuste que AM (bruit, atténuation) mais distance de propagation plus limitée.
- ▶ Plus complexe à mettre en oeuvre (nécessite un Voltage Controled Oscillator VCO).
- Intuitivement le spectre du signal modulé devrait être $\neq 0$ seulement dans la bande $f_p \pm f_\Delta M_x$, c'est FAUX!
- ▶ Les variations continues de fréquence impliquent un spectre utilisant toutes les fréquence.
- ► Cependant la règle de Carson stipule que la majorité de la puissance du signal (98%) est contenue dans la bande

$$b = 2(f_{\Delta} + f_x)$$

Cours de modulation en M1.