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Optimal Transport and divergences
between graphs



Optimal transport between discrete distributions

Distributions Matrix C OT matrix y

[ Source ps
I Target p

N

Kantorovitch formulation : OT Linear Program
When ps = 377 aidxs and py = 3700 bidye

W (ps, pe) = min {(T,C)F = ZTi,jCi,j}
2%

Tell(ps,pt)
where C is a cost matrix with ¢; ; = c(x},x}) = [|x] — x[|” and the constraints are
(jte, pie) = {T € (RT)™ ™| T1,, = a, T 1,, = b}
e W, (s, pe) is called the Wasserstein distance (EMD for p = 1).
e Entropic regularization solved efficiently with Sinkhorn [Cuturi, 2013].

e Classical OT needs distributions lying in the same space — Gromov—Wasserstein3./18
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Optimal transport between discrete distributions

OT matrix with samples
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Kantorovitch formulation : OT Linear Program
When s = >0, aicixf and gy = Y1 bidye

Wy (ps, pe) = __min {(T, Cr = ZTi,jCi,j}
7

TE(ps,pt)

where C is a cost matrix with ¢; ; = ¢(x},x5) = ||x] — x4||” and the constraints are
(g ) = {T € (RY)""| T1,, =2, T71,, = b}
e W, (s, pe) is called the Wasserstein distance (EMD for p = 1).

e Entropic regularization solved efficiently with Sinkhorn [Cuturi, 2013].

e Classical OT needs distributions lying in the same space — Gromov—Wasserstein3./18



Gromov-Wasserstein divergence

Q.

ldx (z,2") — dy (y,y')

Inspired from Gabriel Peyré

GW for discrete distributions [Memoli, 2011]

1

gw (/“ .Ut) = ( min Z |DZ & _D/'l‘pTi 'Tkl>5
pss TEM(pra ) Lot ) 3, g Lk,

with y1s = 37, aidxs and e =37, bj51§ and D, i, = ||x§ — %3, D}, = [|Ix5 — x|

e Distance between metric measured spaces : across different spaces.
e Search for an OT plan that preserve the pairwise relationships between samples.
e Invariant to isometry in either spaces (e.g. rotations and translation).

e Entropy regularized GW proposed in [Peyré et al., 2016]. 4/18



Attributed graphs as distributions

a;

x; ;.: } HaA = Z,L hi(saz-

h g? } px = 27 hiém

e Joint distribution p in the feature/structure space.

e Nodes are weighted by their mass h;.
e Structure encoded by z; (D is adjacency matrix or shortest path).
e Features values a; can be compared through the common metric.

e Importance of the joint modeling:

(v4.01)
) (y1.61)

(x2,a0) (x3,a3) (y2,02) (73.03)
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Fused Gromov-Wasserstein distance

X

Fused Gromov Wasserstein distance [Vayer et al., 2020]

Hs = Z::l hibe;.a; and pe = 2;1:1 gj(syj:bj

1
P

/ _ . / P
FGWopq,a(D, D', pis, pe) = (Teé?b?m) Z (1=a)C} ;+a|D; =D, |") ' Ti Tk,l)

0,5,k,0
With Dz’,k = HTL — ka and D;-J = Hyl — ylH and C/,',j = ||az — b]H
e Parameters ¢ > 1, Vp > 1.

e « € [0,1] is a trade off parameter between structure and features. 6/18



GW and FGW for graph modeling

€y it

ldx (2,2") — dy(y.y")

Gromov-Wasserstein distance [Memoli, 2011]
e Divergence between distributions across metric spaces.

e Can be used to measure similarity between graphs seen as distribution their
pairwise node relationship.

Fused Gromov-Wasserstein distance [Vayer et al., 2018]

e Model labeled structured data as joint structure/labels distributions.
e New versatile method for comparing structured data based on Optimal Transport

e New notion of barycenter of structured data such as graphs or time series

How to use GW/FGW in graph neural networks?
7/18



Template based Graph Neural Network
with Optimal Transport Distances




Graph Neural Networks

Pu(5155:5) Bu, (15:5:5)

¢”/ I(]; d)u,‘,('f/)
.o 6,5

Principle [Bronstein et al., 2017]
e Each layer of the GNN compute features on graph node using the values from the
connected neighbors : message passing principle.
e A step of global aggregation or pooling allows to go from a complex graph object
to a vector representation.

e The pooling step must remain invariant to permutations (min, max, mean).

Can we encode graphs as distributions for pooling in GNN?
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Template based Graph Neural Network with OT Distances

TEGW layer|
(C1,Fy,hy)

0.2 \
[ | B
0.1

T (G o) Yy
. v . R
C, <c,‘¢u<F,),h,>;{:: ----- »—» D -1
0 MLP

G -

fon
. _ } A ]
F; E A Templates : R¥
NN T (Ck,Fk,hk)

Template based FGW layer (TFGW) [Vincent-Cuaz et al., 2022b]

e Principle: represent a graph through its distances to learned templates.
e Novel pooling layer derived from OT distances.

e New end-to-end GNN models for graph-level tasks.

e Learnable parameters are illustrated in red above.
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Template based Graph Neural Network with Optimal Transport Distances

1 TFGW layer
—-— o - . [C.lf‘\,hn
r 0.2 | : ‘
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Ne o I 1. :
| | ? 2 MLP
u
g
F; Templates : RE
N . 1 (Ck.Fx,hix)
- - - - - L °
1. Modeling graphs as discrete distributions eee I

e D;: node relationship matrix e.g adjacency,
shortest-path, laplacian, etc.

e F,;: node feature matrix. 6§

e h;: nodes relative importance (probabilities). c
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Template based Graph Neural Network with Optimal Transport Distances

TFGW layer

(C1,F1.Iny)

v
[ —-
x
(G, Fy, hy) M
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2| FGW,,
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Templates ; R
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2. Node embeddings

e ¢u: GNN of L layers
parameterized by u e.g
GIN, GAT, etc.

e Promotes discriminant
features on the nodes
bu(Fi) 11/18
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Template based Graph Neural Network with Optimal Transport Distances

|- = = - -
TFGW layer |
| (C1,Fy,hy)
Y |
| e,
I |~ ©.Fuhy) Py
v | .
P (Ci, 9u(F)), hy) e peeeee *»| FGW,, d e -+ Yi
2 MLP
e | E—
. R A
F’= | | Templates RK'
GNN 1 I (Ck,Fg,hg) |
3. Template-based Fused Gromov-Wasserstein (TFGW) pooling
OT matrix
e FGW,: OT soft graph matching distance.
e « € [0;1]: relative importance between
structure D; and node features ¢ (F;). [¢]

e {Dy, Fj,h}: FGW distances to K
templates used as graph representation.
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Template based Graph Neural Network with Optimal Transport Distances

TFGWlayerI r4_ _— e = =

(C1,Fy1,hy)
0.2 v
0.2 FGW,, _L
i
L (Cy,Fa,hy)
;'0 [ ;
| (Cis @u(F.), ) o= 5] FGW., [——

= T ]
F,; E— Py
v @ Templates ¢
GNN

T (Ck,Fr, hg) |

MLP

4. Final MLP for predictions
e 1),: MLP with non-linearities fed with the distance embeddings.

e {;: final prediction for graph-level tasks (classification or regression).
e End-to-end optimization of all parameters:

e u and v parameters of GNN ¢ and final MLP .
e {Dy},Fj,hi} TFGW graph templates.
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TFGW benchmark

category model MUTAG PTC | ENZYMES | PROTEIN | NCIL IMDB-B | IMDB-M | COLLAB
Ours TFGW ADJ (L=2) || 96.4(3.3) | 72.4(5.7) | 73.8(4.6) | 82.9(2.7) | 88.1(2.5) || 78.3(3.7) | 56.8(3.1) | 84.3(2.6)
(6w =GIN) | TFGW SP (L=2) || 94.8(3.5) | 70.8(6.3) | 75.1(5.0) | 82.0(3.0) | 86.1(2.7) | 74.1(5.4) | 54.9(3.9) | 80.9(3.1)
OT emb. OT-GNN (L=2) | 91.6(4.6) | 68.0(7.5) | 66.9(3.8) | 76.6(4.0) | 82.9(2.1) | 67.5(3.5) | 52.1(3.0) | 80.7(2.9)
OT-GNN (L=4) || 92.1(3.7) | 65.4(9.6) | 67.3(4.3) | 78.0(5.1) | 83.6(2.5) || 69.1(4.4) | 51.9(2.8) | 81.1(2.5)
WEGL 91.0(3.4) | 66.0(2.4) | 60.0(2.8) | 73.7(1.9) | 75.5(1.4) || 66.4(2.1) | 50.3(1.0) | 79.6(0.5)
GNN PATCHYSAN 91.6(4.6) | 58.9(3.7) | 55.9(4.5) | 75.1(3.3) | 76.9(2.3) | 62.9(3.9) | 45.9(2.5) | 73.1(2.7)
GIN 00.1(4.4) | 63.1(3.9) | 622(3.6) | 76.2(2.8) | 82.2(0.8) | 64.3(3.1) | 50.9(1.7) | 79.3(1.7)
DropGIN 89.8(6.2) | 62.3(6.8) | 65.8(2.7) | 76.9(4.3) | 81.9(2.5) || 66.3(45) | 51.6(3.2) | 80.1(2.8)
PPGN 90.4(5.6) | 65.6(6.0) | 66.9(4.3) | 77.1(4.0) | 82.7(1.8) | 67.2(4.1) | 51.3(2.8) | 81.0(2.1)
DIFFPOOL 86.1(2.0) | 45.0(5.2) | 61.0(3.1) | 71.7(1.4) | 80.9(0.7) | 61.1(2.0) | 45.8(1.4) | 80.8(1.6)
Kernels FGW - ADJ 82.6(72) | 55.3(8.0) | 72.2(4.0) | 72.4(47) | 74.4(2.1) || 70.8(3.6) | 48.9(3.9) | 80.6(1.5)
FGW - SP 84.4(7.3) | 55.5(7.0) | 70.5(6.2) | 74.3(3.3) | 72.8(1.5) | 65.0(4.7) | 47.8(3.8) | 77.8(2.4)
wL 87.4(5.4) | 56.0(3.9) | 69.5(3.2) | 74.4(2.6) | 85.6(1.2) | 67.5(4.0) | 48.5(4.2) | 78.5(1.7)
WWL 86.3(7.9) | 52.6(6.8) | 71.4(5.1) | 73.1(1.4) | 85.7(0.8) || 71.6(3.8) | 52.6(3.0) | 8L4(2.1)

Gain with TFGW +4.3 +4.4 +2.9 +4.9 +2.4 +6.7 +4.2 +2.9

e Comparison with state of the art approach from GNN and graph kernel methods.

Systematic and significant gain of performance with GIN+TFGW.
e Gain independent of GNN architecture (GIN or GAT).

1 year after publication world rankings of TFGW on " papers with code”:
#1 NCI1, #2 COLLAB ENZYMES IMDB-M, #3 MUTAG, PROTEIN.
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Going beyong Weisfeiler-Lehman Isomorphism tests

| 4-Cycles dataset | | Skip-Circles dataset

sample y=0

Fyiow
Q;Q

sample y=1 sample y=6 (11 hops) , sample y=9 (16 hops)

TFGW with various K

TFGW with K = #labels

4CYCLES: accuracies over K (TFGW-fix) SKIP-CIRCLES
1.0{ —mM8M8M8M8Mm™Mm accuracies over K
model 4-Cycles Skip-Circles 1.00 ﬁ
TFGW | 0.99(0.03) || 1.00(0.00) 0.9
TFGW-fix || 0.63(0.11) || 1.00(0.00) 08 0.98
OT-GNN || 0.50(0.00) [ 0.10(0.00) 0.96
0.7 :
GIN 0.50(0.00) || 0.10(0.00)
DropGIN || 1.00(0.01) || 0.82(0.28) 0.6 —— TFGW 0.94 —— sp
PPGN || 1.00(0.01) || 0.90(0.11) 05 — TFGWHix — AD)
5 10 15 2 4 6 8 10

e TFGW has good expressivity on problems beyond WL test.
e Learning the templates is important : TFGW > TFGW fix.
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Graph OT distance embedding

TFGW embedding (PCA)

PCA in the FGW embedding for PTC with no GNN PCA in the FGW embedding for PTC with 2 GIN layers PCA in the FGW embedding for PTC with 2 GIN layers

Samples o Samples Samples
W 4templates W 4templates B 8templates

Learned templates (left) and data samples (right)

FGW templates for PTC Samples from PTC

Template 1 Template 2 Class 0 Class 0 Class 0 Class 0

&

Template 4 Class 1 Class 1 Class 1 Class 1

ERAVAANS




Conclusion

GDL unmixing w'® with A = 0.001

e

Gromov-Wasserstein family for graph modeling

3

u.y)

|dx (2, 2") — dy (

e Graphs modelled as distributions, GYV can measure their similarity.
e Extensions of GW for labeled graphs and Frechet means can be computed.
e TFGW for graph pooling in GNNs [Vincent-Cuaz et al., 2022b].

e Weights on the nodes are important but rarely available : relax the constraints
[Séjourné et al., 2020] or even remove one of them [Vincent-Cuaz et al., 2022a].

Many applications of FGW from brain imagery [Thual et al., 2022] to Graph
Neural Networks [Vincent-Cuaz et al., 2022b].
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Thank you

Python code available on GitHub:

0 e © o oe

.—. .—. .-. )

oe  — oe o

oe oe oe %
0%

https://github.com/Python0T/POT
e OT LP solver, Sinkhorn (stabilized, e—scaling, GPU)

o Domain adaptation with OT.

%%0@ 90

e Barycenters, Wasserstein unmixing.

o Gromov Wasserstein.

NN
et gaeo&rﬁm\ax
B0 enge gL GG

e Solvers for Numpy/Pytorch/Jax/tensorflow/Cupy / / W
/i ‘\ \
Tutorial on OT for ML: Vi AL
http://tinyurl.com/otml-isbi WV #° I"“‘ﬁ e o Q‘ %

® v\
Papers available on my website: o == % Ogoo 3.‘%3

https://remi.flamary.com/ !
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https://github.com/PythonOT/POT
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Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2

FE

° t XS u

@ Source s .. L
® Target u;

%

Entropic regularization [Cuturi, 2013]

We(ps, pe) = __min (T,C)p+ey TijlogTy;

TE(ps,kt) i
e Regularization with the negative entropy —H(T).
e Looses sparsity, but strictly convex optimization problem [Benamou et al., 2015].
e Can be solved with the very efficient Sinkhorn-Knopp matrix scaling algorithm.

e Loss and OT matrix are differentiable and have better statistical properties
[Genevay et al., 2018].
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Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2
oo 8 ®
LIS [}
® oo {o

@ Source s
@ Target u

.. :K.

Entropic regularization [Cuturi, 2013]

Welpos ) = | _min (T, C)p + eZT log Ty,

Regularization with the negative entropy —H (T).
e Looses sparsity, but strictly convex optimization problem [Benamou et al., 2015].
e Can be solved with the very efficient Sinkhorn-Knopp matrix scaling algorithm.

e Loss and OT matrix are differentiable and have better statistical properties
[Genevay et al., 2018].
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Approximating GW in the linear embedding

GW Upper bond [Vincent-Cuaz et al., 2021]
Let two graphs of order N in the linear embedding <2:s wgl)ﬁs> and (ZS wg)ﬁ) ,
the GW divergence can be upper bounded by

owe [ Y wDy, > w?PDs | < W - w?|um (1)
s€[S] s€[S]

with M a PSD matrix of components M), = (DrD,, ﬁth>F, Dy, = diag(h).
Discussion

e The upper bound is the value of GW for a transport 7' = diag(h) assuming that
the nodes are already aligned.

e The bound is exact when the weights w® and w® are close.
e Solving GW with FW si O(N?®log(N)) at each iterations.

e Computing the Mahalanobis upper bound is O(S?) : very fast alterative to GW
for nearest neighbors retrieval.
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Solving the Gromov Wasserstein optimization problem

Optimization problem

GWP (s, =  min Dy — D5 y|PTy The
= i, 5 PP

t t

with s =37, aidx; and pe =37, b;0,0 and Dy = [Ix7 — x|, Djy =[x — x|

e Quadratic Program (Wasserstein is a linear program).
e Nonconvex, NP-hard, related to Quadratic Assignment Problem (QAP).

e Large problem and non convexity forbid standard QP solvers.

Optimization algorithms
e Local solution with conditional gradient algorithm
(Frank-Wolfe) [Frank and Wolfe, 1956].

e Each FW iteration requires solving an OT problems.

e Gromov in 1D has a close form (solved in discrete with
a sort) [Vayer et al., 2019].

e With entropic regularization, one can use mirror descent
[Peyré et al., 2016] or fast low rank approximations

[Scetbon et al., 2021].
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Entropic Gromov-Wasserstein

Optimization Problem

GWE (o, pe) = min > Dy — D[Py Teu+ € TijlogTi;  (2)
Tel(us,nt) | Tl i,j

with ps = 37, aidxs and py = 37, bj5m§ and D, = ||x — x; ||, Dj,; = [|x5 — x{||

J

e Smoothing the original GW with a convex and smooth entropic term.

Solving the entropic G\ [Peyré et al., 2016]
e Problem (2) can be solved using a KL mirror descent.

e This is equivalent to solving at each iteration ¢

T(H_l) = ’1:'[‘1161% <T, G(f)>F +e€ Z Tiﬁj lOg Ti’]’
2,7

Where Gitj) =2, 1Dk — D;A”T,itl) is the gradient of the GW loss at previous
point T,
e Problem above solved using a Sinkhorn-Knopp algorithm of entropic OT.

e Very fast approximation exist for low rank distances [Scetbon et al., 2021].
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FGW Properties

1

’ _ . q P ja\Pp P
FGW,p.q.a(D, D", s, pir) = (Teggﬁ?wi;, ((1—(1)Ciyj+(¥|Dz,k‘ D; | ) T, Tk,l)

Metric properties [Vayer et al., 2020]

o FGVW defines a metric over structured data with measure and features
preserving isometries as invariants.

e FGW is a metric for ¢ = 1 a semi metric for ¢ > 1, Vp > 1.
e The distance is nul iff :

e There exists a Monge map T'# s = fit.
e Structures are equivalent through this Monge map (isometry).
e Features are equal through this Monge map.

Bounds and convergence to finite samples [Vayer et al., 2020]
o FGW(us, 1it) is lower bounded by (1 — a)W(ua, up)? and aGW (ux, py )?
e Convergence of finite samples when X' = ) with d = Dim(X) + Dim(Q2) :

E[FGW (i, ptn)] = O (n_é)
28/18



Solving the unmixing problem

Optimization problem

. 2 - 2
min - GW;3 > w.Ds, D | - \wl|3
s€[S]
e Non-convex Quadratic Program w.r.t. T and w.
e GW for fixed w already have an existing Frank-Wolfe solver.

e We proposed a Block Coordinate Descent algorithm

BCD Algorithm for sparse GW unmixing [Tseng, 2001]
1. repeat
2. Compute OT matrix T' of GW3(D, ", w,D;), with FW [Vayer et al., 2018].
3:  Compute the optimal w given T with Frank-Wolfe algorithm.
4. until convergence

e Since the problem is quadratic optimal steps can be obtained for both FW.

e BCD convergence in practice in a few tens of iterations.
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GDL Extensions

GDL on labeled graphs

e For datasets with labeled graphs, on can learn simultaneously a dictionary of the
structure {D.};c(s] and a dictionary on the labels/features {F.}¢[g).-

e Data fitting is Fused Gromov-Wasserstein distance FGW, same stochastic
algorithmm.

Dictionary on weights

K
win S 0w (DY, wl DL A®, v ) - Mw® [ — ulv
{(wﬁ),vi(k))}k k=1 s s
{(Ds,hs)}s

e \We model the graphs as a linear model on the structure and the node weights

(D™ R®) <Z w®D,, 3 v,i.’“’hs>

e This allows for sparse weights h so embedded graphs with different order.
e We provide in [Vincent-Cuaz et al., 2021] subgradients of GW w.r.t. the mass h.
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FGW for graphs based clustering

Centroids

Training dataset examples

cluster 1

cluster 2

cluster 3

cluster 4

e Clustering of multiple real-valued graphs. Dataset composed of 40 graphs (10
graphs x 4 types of communities)

e k-means clustering using the F'GW barycenter
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FGW barycenter

Euclidean barycenter FGW barycenter
A (D2, p2)
Ty T3 (Dhﬂl) (D3»,U/S)
min Y, Az — i 2 pcmin Y NFOND:D. )
xr )

FGW barycenter p =1,¢ =2
e Estimate FGW barycenter using Frechet means (similar to [Peyré et al., 2016]).
e Barycenter optimization solved via block coordinate descent (on T, D, {a;};).
e Can chose to fix the structure (D) or the features {a;}; in the barycenter.
e a;;, and D updates are weighted averages using T.
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FGW barycenter on labeled graphs

Noiseless graph Noisy graphs samples

Barycenter of noisy graphs
e We select a clean graph, change the number of nodes and add label noise and
random connections.

e We compute the barycenter on n = 15 and n = 7 nodes.

e Barycenter graph is obtained through thresholding of the D matrix.
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FGW barycenter on labeled graphs

2 oER Y A B
Lo i hd
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FGW baryenter for community clustering

Graph with communities Approximate Graph Clustering with transport matrix

Graph approximation and community clustering
min  FGW(D, Do, u, po)

,u
e Approximate the graph (Do, 110) with a small number of nodes.

e Can be seen as a FGW (compressed) barycenter for one graph.

OT matrix give the clustering affectation.

e Works for signle and multiple modes in the clusters.
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Experiments - Unsupervised representation learning

Graph from dataset Model unif. h (GW=0.09) Model est. h (GW=0.08)

Comparison of fixed and learned weights dictionaries
e Graph taken from the IMBD dataset.
e Show original graph and representation after projection on the embedding.
e Uniform weight h has a hard time representing a central node.

Estimated weights b recover a central node.

e In addition some nodes are discarded with 0 weight (graphs can change order).
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Experiments - Clustering benchmark

Table 1. Clustering: Rand Index computed for benchmarked approaches on real datasets.

no attribute discrete attributes real attributes
models IMDB-B IMDB-M MUTAG PTC-MR BZR COX2 ENZYMES PROTEIN
GDL(ours) | 51.64(0.59) | 55.41(0.20) | 70.89(0.11) | 51.90(0.54) | 66.42(1.96) | 59.48(0.68) | 66.97(0.93) | 60.49(0.71)
GWF-r 51.24(0.02) | 55.54(0.03) - - 52.42(2.48) 56.84(0.41) | 72.13(0.19) | 59.96(0.09)

GWF-f | 5047(034) | 54.01(0.37) - - 51.65(296) | 52.86(0.53) | 71.64(0.31) | 58.89(0.39)
GW-k 50.32(0.02) | 53.65(0.07) | 57.56(1.50) | 50.44(0.35) | 56.72(0.50) | 52.48(0.12) | 66.33(1.42) | 50.08(0.01)
sC 50.1100.10) | 544009.45) | 50.82(2.71) | 50.45(0.31) | 42.73(7.06) | 4132(6.07) | 70.74(10.60) | 49.92(1.23)

Clustering Experiments on real datasets

e Different data fitting losses:

e Graphs without node attributes : Gromov-Wasserstein.
e Graphs with node attributes (discrete and real): Fused Gromov-Wasserstein.

e We learn a dictionary on the dataset and perform K-means in the embedding
using the Mahalanobis distance approximation.

e Compared to GW Factorization (GWF) [Xu, 2020] and spectral clustering.

e Similar performance for supervised classification (using GW in a kernel).
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Aligning individual brains with Fused
Unbalanced Gromov-Wasserstein




Inter-subject anatomical and functional variability
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e Math-nonmath contrast map from the Mathlang protocol for 3 IBC subjects
e Each subject has different surfaces (mesh) and signal

e Traditional approach maps the signal on an average mesh (fsaverage bottom line)
to compute an average.
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Aligning individual brains with optimal transport

Source Target
features  features
~. b ol
8 ¢
q AR FJ eR Source Target
i g subject s subject t

e Two subjects recorded with FMRI doing the same mental task.
e We seek an alignment preserving both the local features and the cortex geometry.

e Area can have different surface : relax marginal constraints.
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Fused Unbalanced Gromov-Wasserstein

Wasserstein loss Ly (P) Gromov-Wasserstein loss Low (P)
\ v
Le(P) £ (1-aq) O<Z |F? — F}|5P.; +a 0<Zk |D? ), — D} 11> Py Pry
i<n 1, k<n
0<5<p 0<5,1<p

—|— 14 ( KL(P#l ® P#1|ws ® 'ws) + KL(P#Q ® P#g‘wt ® wt) ) + £ E(P)
Marginal constraints Ly (P) T Entropy

Principle [Thual et al., 2022]

e Preserve the features (Wasserstein loss) and the cortex geometry (GW loss).

e Relax the marginal constraints to allows creation/destruction of mass to encore
change in surface of the areas in the brain across subjects.

t
% FAAIA S y,. y t
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Source subject s Target subject t
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Features VS structure/anatomy preservation

only only
features 9 V anatomical

constraints II II II constraints

Atlas transported on target subject

mm100
Atlas on ’
source subject )
2!

0

8

Geodesic distance from source voxel to target voxel

lllustration of the maps (transported atlas) and displacement on the geodesic as a
function of a.
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Aligning pairs of individuals with FUGW

Training (cross-validated grid-search) Test Baseline correlation Aligned correlation
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e Aligning with FUGW leads to significantly increased correlations across subjects.

e Similar gains on other types of stimuli and acquisition time.
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Aligning individuals to a FUGW barycenter

X% = (FP,DP wP) € argmin ) FUGW(X*, X)
sES

X

/“’,
#/;

mean meaq group analysis group analysis G &
of all subjects  of all subjects on all subjects  on all subjects 05
aligned to barycenter aligned to barycenter
Principle

e We compute a barycenter of different subjects (with fixed anatomy).

e FUGW barycenter significantly increases statistical power of group averages
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