

Rémi Flamary - CMAP, École Polytechnique, Institut Polytechnique de Paris

November 30 2023 Learning on Graphs Meetup, Paris

R. Flamary

T. Vayer

N. Courty

Table of content

Optimal Transport and divergences between graphs

Gromov-Wasserstein divergence

Fused Gromov-Wasserstein and applications on attributed graphs

Template based Graph Neural Network with Optimal Transport Distances

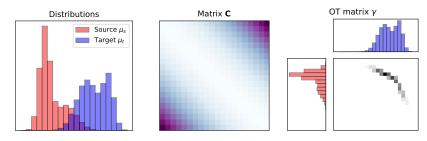
Graph Neural Network

Template based GNN with FGW

Numerical experiments

Optimal Transport and divergences between graphs

Optimal transport between discrete distributions



Kantorovitch formulation : OT Linear Program

When
$$\mu_s=\sum_{i=1}^{n_s} rac{a_i}{\delta_{\mathbf{x}_i^s}}$$
 and $\mu_t=\sum_{i=1}^{n_t} b_i \delta_{\mathbf{x}_i^t}$

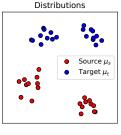
$$W_p^p(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \min_{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})} \quad \left\{ \langle \mathbf{T}, \mathbf{C} \rangle_F = \sum_{i,j} T_{i,j} c_{i,j} \right\}$$

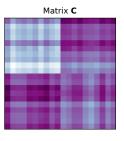
where C is a cost matrix with $c_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_j^t) = \|\mathbf{x}_i^s - \mathbf{x}_j^t\|^p$ and the constraints are

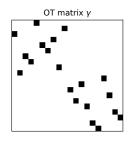
$$\Pi(\pmb{\mu_s},\pmb{\mu_t}) = \left\{ \mathbf{T} \in (\mathbb{R}^+)^{n_s imes n_t} | \, \mathbf{T} \mathbf{1}_{n_t} = \mathbf{a}, \mathbf{T}^T \mathbf{1}_{n_s} = \mathbf{b}
ight\}$$

- $W_p(\mu_s, \mu_t)$ is called the Wasserstein distance (EMD for p=1).
- Entropic regularization solved efficiently with Sinkhorn [Cuturi, 2013].
- ullet Classical OT needs distributions lying in the same space o Gromov-Wasserstein.

Optimal transport between discrete distributions







Kantorovitch formulation: OT Linear Program

When
$$\mu_s = \sum_{i=1}^{n_s} a_i \delta_{\mathbf{x}_i^s}$$
 and $\mu_t = \sum_{i=1}^{n_t} b_i \delta_{\mathbf{x}_i^t}$

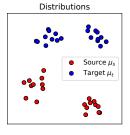
$$W_p^p(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \min_{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})} \quad \left\{ \langle \mathbf{T}, \mathbf{C} \rangle_F = \sum_{i,j} T_{i,j} c_{i,j} \right\}$$

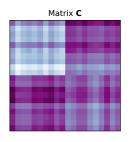
where C is a cost matrix with $c_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_j^t) = \|\mathbf{x}_i^s - \mathbf{x}_j^t\|^p$ and the constraints are

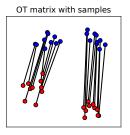
$$\Pi({\color{red}\mu_s},{\color{black}\mu_t}) = \left\{ \mathbf{T} \in (\mathbb{R}^+)^{n_s imes n_t} | \, \mathbf{T} \mathbf{1}_{n_t} = \mathbf{a}, \mathbf{T}^T \mathbf{1}_{n_s} = \mathbf{b}
ight\}$$

- $W_p(\mu_s, \mu_t)$ is called the Wasserstein distance (EMD for p=1).
- Entropic regularization solved efficiently with Sinkhorn [Cuturi, 2013].
- ullet Classical OT needs distributions lying in the same space o Gromov-Wasserstein.

Optimal transport between discrete distributions







Kantorovitch formulation: OT Linear Program

When $\mu_s = \sum_{i=1}^{n_s} a_i \delta_{\mathbf{x}_i^s}$ and $\mu_t = \sum_{i=1}^{n_t} b_i \delta_{\mathbf{x}_i^t}$

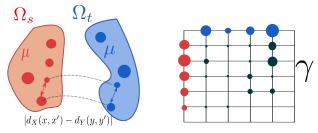
$$W_p^p(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \min_{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})} \quad \left\{ \langle \mathbf{T}, \mathbf{C} \rangle_F = \sum_{i,j} T_{i,j} c_{i,j} \right\}$$

where C is a cost matrix with $c_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_j^t) = \|\mathbf{x}_i^s - \mathbf{x}_j^t\|^p$ and the constraints are

$$\Pi({\color{red}\mu_{s}},{\color{black}\mu_{t}}) = \left\{ \mathbf{T} \in (\mathbb{R}^{+})^{n_{s} imes n_{t}} | \, \mathbf{T} \mathbf{1}_{n_{t}} = \mathbf{a}, \mathbf{T}^{T} \mathbf{1}_{n_{s}} = \mathbf{b}
ight\}$$

- $W_p(\mu_s, \mu_t)$ is called the Wasserstein distance (EMD for p=1).
- Entropic regularization solved efficiently with Sinkhorn [Cuturi, 2013].
- ullet Classical OT needs distributions lying in the same space o Gromov-Wasserstein.

Gromov-Wasserstein divergence



Inspired from Gabriel Peyré

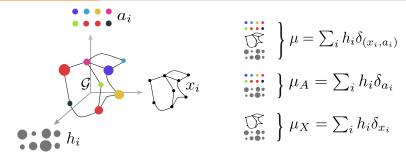
GW for discrete distributions [Memoli, 2011]

$$\mathcal{GW}_p(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \left(\min_{T \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})} \sum_{i, j, k, l} |\boldsymbol{D_{i,k}} - \boldsymbol{D'_{j,l}}|^p T_{i,j} T_{k,l}\right)^{\frac{1}{p}}$$

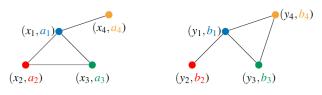
with
$$\mu_s = \sum_i a_i \delta_{\mathbf{x}_i^s}$$
 and $\mu_t = \sum_j b_j \delta_{x_j^t}$ and $D_{i,k} = \|\mathbf{x}_i^s - \mathbf{x}_k^s\|, D_{j,l}' = \|\mathbf{x}_j^t - \mathbf{x}_l^t\|$

- Distance between metric measured spaces: across different spaces.
- Search for an OT plan that preserve the pairwise relationships between samples.
- Invariant to isometry in either spaces (e.g. rotations and translation).
- Entropy regularized GW proposed in [Peyré et al., 2016].

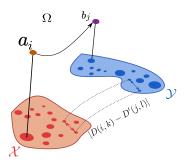
Attributed graphs as distributions



- ullet Joint distribution μ in the feature/structure space.
 - Nodes are weighted by their mass h_i .
 - Structure encoded by x_i (D is adjacency matrix or shortest path).
 - ullet Features values a_i can be compared through the common metric.
- Importance of the joint modeling:



Fused Gromov-Wasserstein distance



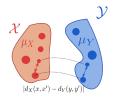
Fused Gromov Wasserstein distance [Vayer et al., 2020]

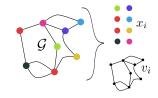
$$\begin{split} & \boldsymbol{\mu_s} = \sum_{i=1}^n h_i \delta_{\boldsymbol{x_i}, \boldsymbol{a_i}} \text{ and } \boldsymbol{\mu_t} = \sum_{j=1}^m g_j \delta_{\boldsymbol{y_j}, \boldsymbol{b_j}} \\ & \mathcal{FGW}_{p,q,\alpha}(D, D', \boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \left(\min_{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})} \sum_{i,j,k,l} \left((1-\alpha) C_{i,j}^q + \alpha | \mathbf{D_{i,k}} - D_{j,l}'|^q \right)^p T_{i,j} \, T_{k,l} \right)^{\frac{1}{p}} \end{split}$$

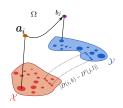
with $D_{i,k} = ||x_i - x_k||$ and $D'_{i,l} = ||y_i - y_l||$ and $C_{i,j} = ||a_i - b_j||$

- Parameters q > 1, $\forall p \ge 1$.
- $\alpha \in [0,1]$ is a trade off parameter between structure and features.

GW and FGW for graph modeling







Gromov-Wasserstein distance [Memoli, 2011]

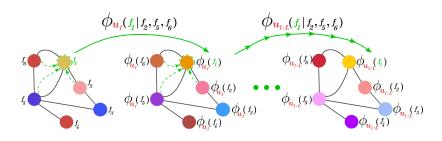
- Divergence between distributions across metric spaces.
- Can be used to measure similarity between graphs seen as distribution their pairwise node relationship.

Fused Gromov-Wasserstein distance [Vayer et al., 2018]

- Model labeled structured data as joint structure/labels distributions.
- New versatile method for comparing structured data based on Optimal Transport
- New notion of barycenter of structured data such as graphs or time series

How to use GW/FGW in graph neural networks?

Graph Neural Networks

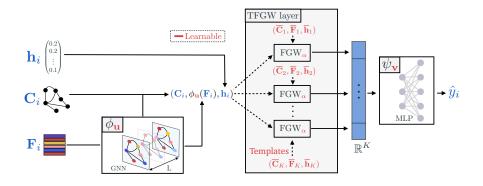


Principle [Bronstein et al., 2017]

- Each layer of the GNN compute features on graph node using the values from the connected neighbors: message passing principle.
- A step of global aggregation or pooling allows to go from a complex graph object to a vector representation.
- The pooling step must remain invariant to permutations (min, max, mean).

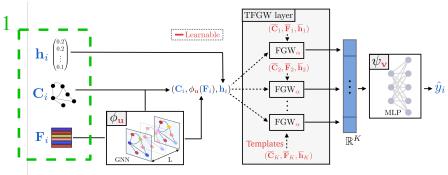
Can we encode graphs as distributions for pooling in GNN?

Template based Graph Neural Network with OT Distances



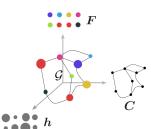
Template based FGW layer (TFGW) [Vincent-Cuaz et al., 2022b]

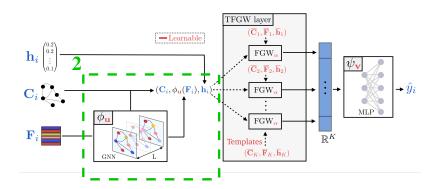
- Principle: represent a graph through its distances to learned templates.
- Novel pooling layer derived from OT distances.
- New end-to-end GNN models for graph-level tasks.
- Learnable parameters are illustrated in red above.



1. Modeling graphs as discrete distributions

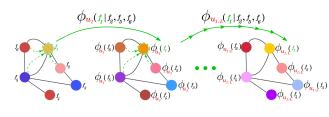
- D_i: node relationship matrix e.g adjacency, shortest-path, laplacian, etc.
- \mathcal{F}_i : node feature matrix.
- h_i : nodes relative importance (probabilities).

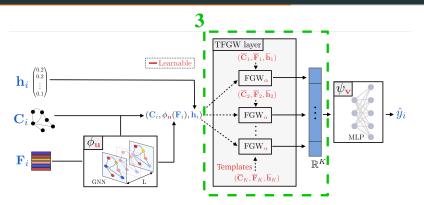




2. Node embeddings

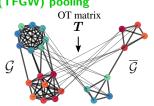
- $\phi_{\mathbf{u}}$: GNN of L layers parameterized by \mathbf{u} e.g GIN, GAT, etc.
- Promotes discriminant features on the nodes $\phi_{\mathbf{u}}(\mathcal{F}_i)$

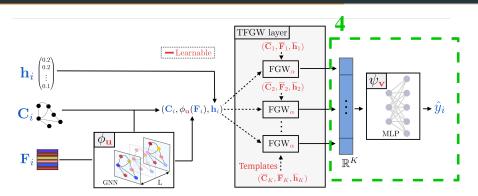




3. Template-based Fused Gromov-Wasserstein (TFGW) pooling

- FGW_{α} : OT soft graph matching distance.
- $\alpha \in [0; 1]$: relative importance between structure D_i and node features $\phi_{\mathbf{u}}(\mathcal{F}_i)$.
- $\{\overline{D}_k, \overline{\mathcal{F}}_k, \overline{h}_k\}$: FGW distances to K templates used as graph representation.





4. Final MLP for predictions

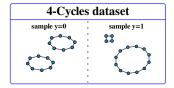
- $\psi_{\mathbf{v}}$: MLP with non-linearities fed with the distance embeddings.
- \hat{y}_i : final prediction for graph-level tasks (classification or regression).
- End-to-end optimization of all parameters:
 - **u** and **v** parameters of GNN $\phi_{\mathbf{u}}$ and final MLP $\psi_{\mathbf{v}}$.
 - $\{\overline{D}_k, \overline{\mathcal{F}}_k, \overline{h}_k\}$ TFGW graph templates.

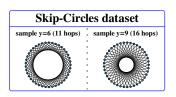
TFGW benchmark

category	model	MUTAG	PTC	ENZYMES	PROTEIN	NCI1	IMDB-B	IMDB-M	COLLAB
Ours	TFGW ADJ (L=2)	96.4(3.3)	72.4(5.7)	73.8(4.6)	82.9(2.7)	88.1(2.5)	78.3(3.7)	56.8(3.1)	84.3(2.6)
$(\phi_u = GIN)$	TFGW SP (L=2)	94.8(3.5)	70.8(6.3)	75.1(5.0)	82.0(3.0)	86.1(2.7)	74.1(5.4)	54.9(3.9)	80.9(3.1)
OT emb.	OT-GNN (L=2)	91.6(4.6)	68.0(7.5)	66.9(3.8)	76.6(4.0)	82.9(2.1)	67.5(3.5)	52.1(3.0)	80.7(2.9)
	OT-GNN (L=4)	92.1(3.7)	65.4(9.6)	67.3(4.3)	78.0(5.1)	83.6(2.5)	69.1(4.4)	51.9(2.8)	81.1(2.5)
	WEGL	91.0(3.4)	66.0(2.4)	60.0(2.8)	73.7(1.9)	75.5(1.4)	66.4(2.1)	50.3(1.0)	79.6(0.5)
GNN	PATCHYSAN	91.6(4.6)	58.9(3.7)	55.9(4.5)	75.1(3.3)	76.9(2.3)	62.9(3.9)	45.9(2.5)	73.1(2.7)
	GIN	90.1(4.4)	63.1(3.9)	62.2(3.6)	76.2(2.8)	82.2(0.8)	64.3(3.1)	50.9(1.7)	79.3(1.7)
	DropGIN	89.8(6.2)	62.3(6.8)	65.8(2.7)	76.9(4.3)	81.9(2.5)	66.3(4.5)	51.6(3.2)	80.1(2.8)
	PPGN	90.4(5.6)	65.6(6.0)	66.9(4.3)	77.1(4.0)	82.7(1.8)	67.2(4.1)	51.3(2.8)	81.0(2.1)
	DIFFPOOL	86.1(2.0)	45.0(5.2)	61.0(3.1)	71.7(1.4)	80.9(0.7)	61.1(2.0)	45.8(1.4)	80.8(1.6)
Kernels	FGW - ADJ	82.6(7.2)	55.3(8.0)	72.2(4.0)	72.4(4.7)	74.4(2.1)	70.8(3.6)	48.9(3.9)	80.6(1.5)
	FGW - SP	84.4(7.3)	55.5(7.0)	70.5(6.2)	74.3(3.3)	72.8(1.5)	65.0(4.7)	47.8(3.8)	77.8(2.4)
	WL	87.4(5.4)	56.0(3.9)	69.5(3.2)	74.4(2.6)	85.6(1.2)	67.5(4.0)	48.5(4.2)	78.5(1.7)
	WWL	86.3(7.9)	52.6(6.8)	71.4(5.1)	73.1(1.4)	85.7(0.8)	71.6(3.8)	52.6(3.0)	81.4(2.1)
	Gain with TFGW	+4.3	+4.4	+2.9	+4.9	+2.4	+6.7	+4.2	+2.9

- Comparison with state of the art approach from GNN and graph kernel methods.
- Systematic and significant gain of performance with GIN+TFGW.
- Gain independent of GNN architecture (GIN or GAT).
- 1 year after publication world rankings of TFGW on "papers with code": #1 NCI1, #2 COLLAB ENZYMES IMDB-M, #3 MUTAG, PROTEIN.

Going beyong Weisfeiler-Lehman Isomorphism tests

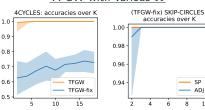




TFGW with K = #labels

model	4-Cycles	Skip-Circles		
TFGW	0.99(0.03)	1.00(0.00)		
TFGW-fix	0.63(0.11)	1.00(0.00)		
OT-GNN	0.50(0.00)	0.10(0.00)		
GIN	0.50(0.00)	0.10(0.00)		
DropGIN	1.00(0.01)	0.82(0.28)		
PPGN	1.00(0.01)	0.90(0.11)		

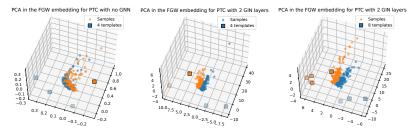
TFGW with various K



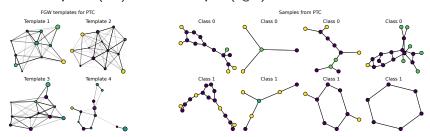
- TFGW has good expressivity on problems beyond WL test.
- Learning the templates is important : TFGW > TFGW fix.

Graph OT distance embedding

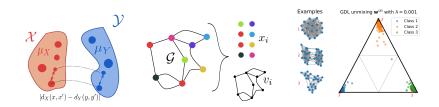
TFGW embedding (PCA)



Learned templates (left) and data samples (right)



Conclusion

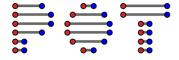


Gromov-Wasserstein family for graph modeling

- ullet Graphs modelled as distributions, \mathcal{GW} can measure their similarity.
- Extensions of GW for labeled graphs and Frechet means can be computed.
- TFGW for graph pooling in GNNs [Vincent-Cuaz et al., 2022b].
- Weights on the nodes are important but rarely available: relax the constraints
 [Séjourné et al., 2020] or even remove one of them [Vincent-Cuaz et al., 2022a].
- Many applications of FGW from brain imagery [Thual et al., 2022] to Graph Neural Networks [Vincent-Cuaz et al., 2022b].

Thank you

Python code available on GitHub:



https://github.com/PythonOT/POT

ullet OT LP solver, Sinkhorn (stabilized, $\epsilon-$ scaling, GPU)

• Domain adaptation with OT.

Barycenters, Wasserstein unmixing.

Gromov Wasserstein.

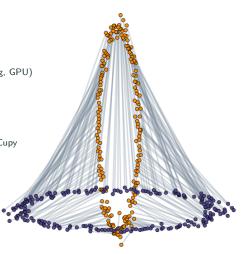
• Solvers for Numpy/Pytorch/Jax/tensorflow/Cupy

Tutorial on OT for ML:

http://tinyurl.com/otml-isbi

Papers available on my website:

https://remi.flamary.com/



References i

Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., and Peyré, G. (2015). **Iterative Bregman projections for regularized transportation problems.** *SISC.*

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. (2017).

Geometric deep learning: going beyond euclidean data.

IEEE Signal Processing Magazine, 34(4):18–42.

Cuturi, M. (2013).

Sinkhorn distances: Lightspeed computation of optimal transportation. In *Neural Information Processing Systems (NIPS)*, pages 2292–2300.

Frank, M. and Wolfe, P. (1956).

An algorithm for quadratic programming.

Naval research logistics quarterly, 3(1-2):95-110.

References ii

Genevay, A., Chizat, L., Bach, F., Cuturi, M., and Peyré, G. (2018).

Sample complexity of sinkhorn divergences.

arXiv preprint arXiv:1810.02733.

Memoli, F. (2011).

Gromov wasserstein distances and the metric approach to object matching. Foundations of Computational Mathematics, pages 1–71.

Peyré, G., Cuturi, M., and Solomon, J. (2016).

Gromov-wasserstein averaging of kernel and distance matrices.

In ICML, pages 2664–2672.

Scetbon, M., Peyré, G., and Cuturi, M. (2021).

Linear-time gromov wasserstein distances using low rank couplings and costs.

arXiv preprint arXiv:2106.01128.

References i

Séjourné, T., Vialard, F.-X., and Peyré, G. (2020).

The unbalanced gromov wasserstein distance: Conic formulation and relaxation.

arXiv preprint arXiv:2009.04266.

Thual, A., Tran, H., Zemskova, T., Courty, N., Flamary, R., Dehaene, S., and Thirion, B. (2022).

Aligning individual brains with fused unbalanced gromov-wasserstein.

In Neural Information Processing Systems (NeurIPS).

Tseng, P. (2001).

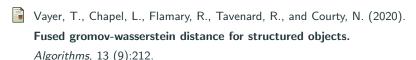
Convergence of a block coordinate descent method for nondifferentiable minimization.

Journal of optimization theory and applications, 109(3):475-494.

Vayer, T., Chapel, L., Flamary, R., Tavenard, R., and Courty, N. (2018).

Fused gromov-wasserstein distance for structured objects: theoretical foundations and mathematical properties.

References iv



Vayer, T., Flamary, R., Tavenard, R., Chapel, L., and Courty, N. (2019). Sliced gromov-wasserstein.

In Neural Information Processing Systems (NeurIPS).

Vincent-Cuaz, C., Flamary, R., Corneli, M., Vayer, T., and Courty, N. (2022a). Semi-relaxed gromov wasserstein divergence with applications on graphs. In *International Conference on Learning Representations (ICLR)*.

Vincent-Cuaz, C., Flamary, R., Corneli, M., Vayer, T., and Courty, N. (2022b). **Template based graph neural network with optimal transport distances.** In *Neural Information Processing Systems (NeurIPS)*.

References v

Vincent-Cuaz, C., Vayer, T., Flamary, R., Corneli, M., and Courty, N. (2021).

Online graph dictionary learning.

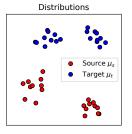
In International Conference on Machine Learning (ICML).

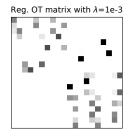
Xu, H. (2020).

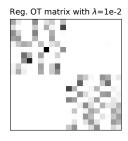
Gromov-wasserstein factorization models for graph clustering.

In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pages 6478–6485.

Entropic regularized optimal transport





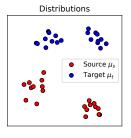


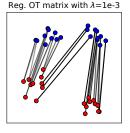
Entropic regularization [Cuturi, 2013]

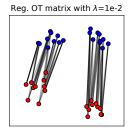
$$W_{\epsilon}(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \min_{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})} \quad \langle \mathbf{T}, \mathbf{C} \rangle_F + \epsilon \sum_{i,j} T_{i,j} \log T_{i,j}$$

- ullet Regularization with the negative entropy $-H(\mathbf{T})$.
- Looses sparsity, but strictly convex optimization problem [Benamou et al., 2015].
- Can be solved with the very efficient Sinkhorn-Knopp matrix scaling algorithm.
- Loss and OT matrix are differentiable and have better statistical properties [Genevay et al., 2018].

Entropic regularized optimal transport







Entropic regularization [Cuturi, 2013]

$$W_{\epsilon}(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \min_{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})} \langle \mathbf{T}, \mathbf{C} \rangle_F + \epsilon \sum_{i,j} T_{i,j} \log T_{i,j}$$

- Regularization with the negative entropy $-H(\mathbf{T})$.
- Looses sparsity, but strictly convex optimization problem [Benamou et al., 2015].
- Can be solved with the very efficient Sinkhorn-Knopp matrix scaling algorithm.
- Loss and OT matrix are differentiable and have better statistical properties [Genevay et al., 2018].

Approximating GW in the linear embedding

GW Upper bond [Vincent-Cuaz et al., 2021]

Let two graphs of order N in the linear embedding $\left(\sum_s w_s^{(1)} \overline{D_s}\right)$ and $\left(\sum_s w_s^{(2)} \overline{D_s}\right)$, the \mathcal{GW} divergence can be upper bounded by

$$\mathcal{GW}_2\left(\sum_{s\in[S]} w_s^{(1)} \overline{D_s}, \sum_{s\in[S]} w_s^{(2)} \overline{D_s}\right) \le \|\mathbf{w}^{(1)} - \mathbf{w}^{(2)}\|_{\boldsymbol{M}}$$
(1)

with M a PSD matrix of components $M_{p,q} = \left\langle D_h \overline{D_p}, \overline{D_q} D_h \right\rangle_F$, $D_h = diag(h)$.

Discussion

- ullet The upper bound is the value of GW for a transport $T=diag(m{h})$ assuming that the nodes are already aligned.
- The bound is exact when the weights $\mathbf{w}^{(1)}$ and $\mathbf{w}^{(2)}$ are close.
- Solving \mathcal{GW} with FW si $O(N^3 \log(N))$ at each iterations.
- Computing the Mahalanobis upper bound is $O(S^2)$: very fast alterative to GW for nearest neighbors retrieval.

Solving the Gromov Wasserstein optimization problem

Optimization problem

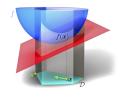
$$\mathcal{GW}_{p}^{p}(\mu_{s}, \mu_{t}) = \min_{\mathbf{T} \in \Pi(\mu_{s}, \mu_{t})} \sum_{i, j, k, l} |D_{i,k} - D'_{j,l}|^{p} T_{i,j} T_{k,l}$$

with
$$\mu_s = \sum_i a_i \delta_{\mathbf{x}_i^s}$$
 and $\mu_t = \sum_j b_j \delta_{x_j^t}$ and $D_{i,k} = \|\mathbf{x}_i^s - \mathbf{x}_k^s\|$, $D'_{j,l} = \|\mathbf{x}_j^t - \mathbf{x}_l^t\|$

- Quadratic Program (Wasserstein is a linear program).
- Nonconvex, NP-hard, related to Quadratic Assignment Problem (QAP).
- Large problem and non convexity forbid standard QP solvers.

Optimization algorithms

- Local solution with conditional gradient algorithm (Frank-Wolfe) [Frank and Wolfe, 1956].
- Each FW iteration requires solving an OT problems.
- Gromov in 1D has a close form (solved in discrete with a sort) [Vayer et al., 2019].
- With entropic regularization, one can use mirror descent [Peyré et al., 2016] or fast low rank approximations [Scetbon et al., 2021].



Entropic Gromov-Wasserstein

Optimization Problem

$$\mathcal{GW}_{p,\epsilon}^{p}(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \min_{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})} \sum_{i,j,k,l} |D_{i,k} - D'_{j,l}|^p T_{i,j} T_{k,l} + \epsilon \sum_{i,j} T_{i,j} \log T_{i,j}$$
(2)

with
$$\mu_s = \sum_i a_i \delta_{\mathbf{x}_i^s}$$
 and $\mu_t = \sum_j b_j \delta_{x_j^t}$ and $D_{i,k} = \|\mathbf{x}_i^s - \mathbf{x}_k^s\|, D_{j,l}' = \|\mathbf{x}_j^t - \mathbf{x}_l^t\|$

Smoothing the original GW with a convex and smooth entropic term.

Solving the entropic \mathcal{GW} [Peyré et al., 2016]

- Problem (2) can be solved using a KL mirror descent.
- ullet This is equivalent to solving at each iteration t

$$\mathbf{T}^{(t+1)} = \min_{\mathbf{T} \in \mathcal{P}} \left\langle \mathbf{T}, \mathbf{G}^{(t)} \right\rangle_F + \epsilon \sum_{i,j} T_{i,j} \log T_{i,j}$$

Where $G_{i,j}^{(t)} = 2\sum_{k,l} |D_{i,k} - D'_{j,l}|^p T_{k,l}^{(t)}$ is the gradient of the GW loss at previous point $\mathbf{T}^{(k)}$.

- Problem above solved using a Sinkhorn-Knopp algorithm of entropic OT.
- Very fast approximation exist for low rank distances [Scetbon et al., 2021].

FGW Properties

$$\mathcal{FGW}_{p,q,\alpha}(D,D',\boldsymbol{\mu_s},\boldsymbol{\mu_t}) = \left(\min_{\mathbf{T} \in \Pi(\boldsymbol{\mu_s},\boldsymbol{\mu_t})} \sum_{i,j,k,l} \left((1-\alpha)C_{i,j}^q + \alpha | \boldsymbol{D_{i,k}} - \boldsymbol{D'_{j,l}}|^q \right)^p T_{i,j} T_{k,l} \right)^{\frac{1}{p}}$$

Metric properties [Vayer et al., 2020]

- FGW defines a metric over structured data with measure and features preserving isometries as invariants.
- \mathcal{FGW} is a metric for q=1 a semi metric for q>1, $\forall p\geq 1$.
- The distance is nul iff:
 - There exists a Monge map $T\#\mu_s = \mu_t$.
 - Structures are equivalent through this Monge map (isometry).
 - Features are equal through this Monge map.

Bounds and convergence to finite samples [Vayer et al., 2020]

- $\mathcal{FGW}(\mu_s, \mu_t)$ is lower bounded by $(1 \alpha)\mathcal{W}(\mu_A, \mu_B)^q$ and $\alpha\mathcal{GW}(\mu_X, \mu_Y)^q$
- Convergence of finite samples when $\mathcal{X} = \mathcal{Y}$ with $d = Dim(\mathcal{X}) + Dim(\Omega)$:

$$\mathbb{E}[\mathcal{FGW}(\mu, \mu_n)] = O\left(n^{-\frac{1}{d}}\right)$$

Solving the unmixing problem

Optimization problem

$$\min_{\mathbf{w} \in \Sigma_S} \quad \mathcal{GW}_2^2 \left(\sum_{s \in [S]} w_s \overline{D_s} , D \right) - \lambda \|\mathbf{w}\|_2^2$$

- Non-convex Quadratic Program w.r.t. T and w.
- GW for fixed w already have an existing Frank-Wolfe solver.
- We proposed a Block Coordinate Descent algorithm

BCD Algorithm for sparse GW unmixing [Tseng, 2001]

- 1: repeat
- 2: Compute OT matrix T of $\mathcal{GW}_2^2(D,\sum_s w_s\overline{D_s})$, with FW [Vayer et al., 2018].
- 3: Compute the optimal ${\bf w}$ given ${\bf T}$ with Frank-Wolfe algorithm.
- 4: until convergence
 - Since the problem is quadratic optimal steps can be obtained for both FW.
 - BCD convergence in practice in a few tens of iterations.

GDL Extensions

GDL on labeled graphs

- For datasets with labeled graphs, on can learn simultaneously a dictionary of the structure $\{\overline{D}_s\}_{s\in[S]}$ and a dictionary on the labels/features $\{\overline{F}_s\}_{s\in[S]}$.
- \bullet Data fitting is Fused Gromov-Wasserstein distance $\mathcal{FGW},$ same stochastic algorithmm.

Dictionary on weights

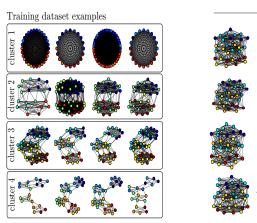
$$\min_{\substack{\{(\mathbf{w}^{(k)}, \mathbf{v}^{(k)})\}_k \\ \{(\overline{D}_s, \overline{h_s})\}_s}} \sum_{k=1}^K \mathcal{GW}_2^2 \left(D^{(k)}, \sum_s w_s^{(k)} \overline{D_s}, \boldsymbol{h}^{(k)}, \sum_s v_s^{(k)} \overline{h_s} \right) - \lambda \|\mathbf{w}^{(k)}\|_2^2 - \mu \|\mathbf{v}^{(k)}\|_2^2$$

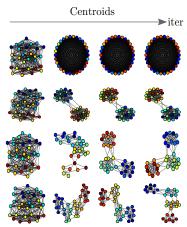
• We model the graphs as a linear model on the structure and the node weights

$$(\boldsymbol{D}^{(k)}, \boldsymbol{h}^{(k)}) \longrightarrow \left(\sum_s w_s^{(k)} \boldsymbol{D}_s, \sum_s v_s^{(k)} \overline{\boldsymbol{h}_s}\right)$$

- ullet This allows for sparse weights h so embedded graphs with different order.
- ullet We provide in [Vincent-Cuaz et al., 2021] subgradients of GW w.r.t. the mass h.

FGW for graphs based clustering

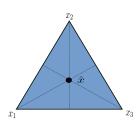




- ullet Clustering of multiple real-valued graphs. Dataset composed of 40 graphs (10 graphs \times 4 types of communities)
- ullet k-means clustering using the FGW barycenter

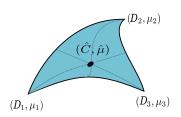
FGW barycenter

Euclidean barycenter



$$\min_{x} \sum_{k} \lambda_{k} \|x - x_{k}\|^{2}$$

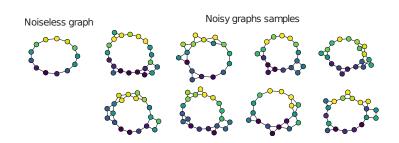
FGW barycenter



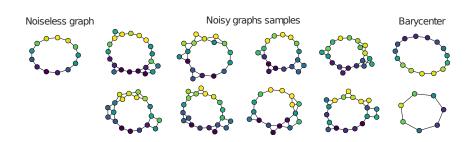
$$\min_{D \in \mathbb{R}^{n \times n}, \mu} \sum_{i} \lambda_{i} \mathcal{FGW}(D_{i}, D, \mu_{i}, \mu)$$

FGW barycenter p = 1, q = 2

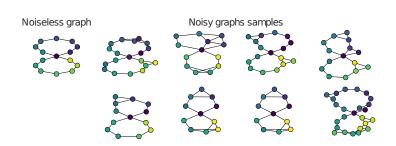
- Estimate FGW barycenter using Frechet means (similar to [Peyré et al., 2016]).
- Barycenter optimization solved via block coordinate descent (on $T, D, \{a_i\}_i$).
- Can chose to fix the structure (D) or the features $\{a_i\}_i$ in the barycenter.
- a_{ii} , and D updates are weighted averages using T.



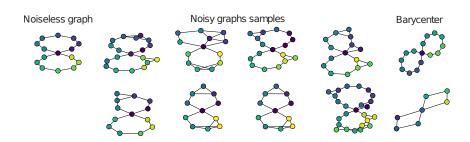
- We select a clean graph, change the number of nodes and add label noise and random connections.
- ullet We compute the barycenter on n=15 and n=7 nodes.
- \bullet Barycenter graph is obtained through thresholding of the D matrix.



- We select a clean graph, change the number of nodes and add label noise and random connections.
- ullet We compute the barycenter on n=15 and n=7 nodes.
- \bullet Barycenter graph is obtained through thresholding of the D matrix.

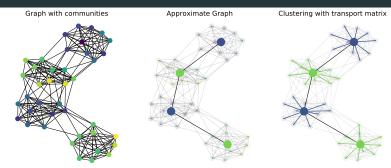


- We select a clean graph, change the number of nodes and add label noise and random connections.
- ullet We compute the barycenter on n=15 and n=7 nodes.
- \bullet Barycenter graph is obtained through thresholding of the D matrix.



- We select a clean graph, change the number of nodes and add label noise and random connections.
- ullet We compute the barycenter on n=15 and n=7 nodes.
- ullet Barycenter graph is obtained through thresholding of the D matrix.

FGW baryenter for community clustering

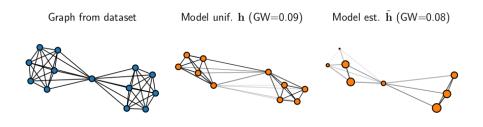


Graph approximation and community clustering

$$\min_{\mathbf{D},\mu} \quad \mathcal{FGW}(\mathbf{D}, \mathbf{D}_0, \mu, \mu_0)$$

- Approximate the graph (\mathbf{D}_0, μ_0) with a small number of nodes.
- Can be seen as a FGW (compressed) barycenter for one graph.
- OT matrix give the clustering affectation.
- Works for signle and multiple modes in the clusters.

Experiments - Unsupervised representation learning



Comparison of fixed and learned weights dictionaries

- Graph taken from the IMBD dataset.
- Show original graph and representation after projection on the embedding.
- Uniform weight *h* has a hard time representing a central node.
- ullet Estimated weights $ilde{h}$ recover a central node.
- In addition some nodes are discarded with 0 weight (graphs can change order).

Experiments - Clustering benchmark

Table 1. Clustering: Rand Index computed for benchmarked approaches on real datasets.

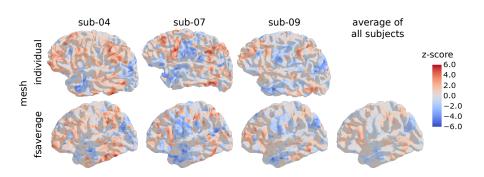
	no attribute		discrete attributes		real attributes			
models	IMDB-B	IMDB-M	MUTAG	PTC-MR	BZR	COX2	ENZYMES	PROTEIN
GDL(ours)	51.64(0.59)	55.41(0.20)	70.89(0.11)	51.90(0.54)	66.42(1.96)	59.48(0.68)	66.97(0.93)	60.49(0.71)
GWF-r	51.24 (0.02)	55.54(0.03)	-	-	52.42(2.48)	56.84(0.41)	72.13(0.19)	59.96(0.09)
GWF-f	50.47(0.34)	54.01(0.37)	-	-	51.65(2.96)	52.86(0.53)	71.64(0.31)	58.89(0.39)
GW-k	50.32(0.02)	53.65(0.07)	57.56(1.50)	50.44(0.35)	56.72(0.50)	52.48(0.12)	66.33(1.42)	50.08(0.01)
SC	50.11(0.10)	54.40(9.45)	50.82(2.71)	50.45(0.31)	42.73(7.06)	41.32(6.07)	70.74(10.60)	49.92(1.23)

Clustering Experiments on real datasets

- Different data fitting losses:
 - Graphs without node attributes : Gromov-Wasserstein.
 - Graphs with node attributes (discrete and real): Fused Gromov-Wasserstein.
- We learn a dictionary on the dataset and perform K-means in the embedding using the Mahalanobis distance approximation.
- Compared to GW Factorization (GWF) [Xu, 2020] and spectral clustering.
- Similar performance for supervised classification (using GW in a kernel).

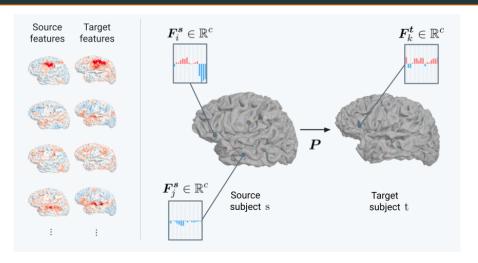
Aligning individual brains with Fused	
Unbalanced Gromov-Wasserstein	

Inter-subject anatomical and functional variability



- Math-nonmath contrast map from the Mathlang protocol for 3 IBC subjects
- Each subject has different surfaces (mesh) and signal
- Traditional approach maps the signal on an average mesh (fsaverage bottom line) to compute an average.

Aligning individual brains with optimal transport



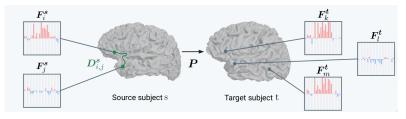
- Two subjects recorded with FMRI doing the same mental task.
- We seek an alignment preserving both the local features and the cortex geometry.
- Area can have different surface : relax marginal constraints.

Fused Unbalanced Gromov-Wasserstein

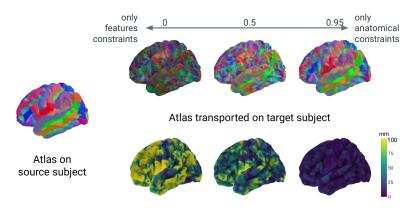
$$\begin{array}{c} & \underbrace{ \text{Wasserstein loss } \mathsf{L}_{\mathsf{W}}(\boldsymbol{P}) }_{\mathsf{L}_{\theta}}(\boldsymbol{P}) & \underbrace{ \text{Gromov-Wasserstein loss } \mathsf{L}_{\mathsf{GW}}(\boldsymbol{P}) }_{\mathsf{Q} \leq i, k < n} \\ \mathsf{L}_{\theta}(\boldsymbol{P}) & \triangleq (1 - \alpha) \underbrace{ \sum_{\substack{0 \leq i < n \\ 0 \leq j < p}} ||\boldsymbol{F}_{i}^{s} - \boldsymbol{F}_{j}^{t}||_{2}^{2} \boldsymbol{P}_{i,j} }_{\mathsf{Q} \leq i, k < n} \\ + \alpha \underbrace{ \sum_{\substack{0 \leq i, k < n \\ 0 \leq j, l < p}} |\boldsymbol{D}_{i,k}^{s} - \boldsymbol{D}_{j,l}^{t}|^{2} \boldsymbol{P}_{i,j} \boldsymbol{P}_{k,l} \\ & + \rho \left(\mathsf{KL}(\boldsymbol{P}_{\#1} \otimes \boldsymbol{P}_{\#1} | \boldsymbol{w}^{s} \otimes \boldsymbol{w}^{s}) + \mathsf{KL}(\boldsymbol{P}_{\#2} \otimes \boldsymbol{P}_{\#2} | \boldsymbol{w}^{t} \otimes \boldsymbol{w}^{t}) \right) + \varepsilon \underbrace{ E(\boldsymbol{P}) }_{\mathsf{Marginal constraints } \mathsf{L}_{\mathsf{U}}(\boldsymbol{P}) \end{array}$$

Principle [Thual et al., 2022]

- Preserve the features (Wasserstein loss) and the cortex geometry (GW loss).
- Relax the marginal constraints to allows creation/destruction of mass to encore change in surface of the areas in the brain across subjects.



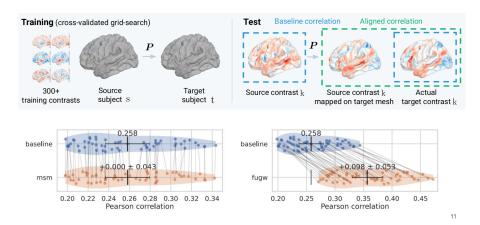
Features VS structure/anatomy preservation



Geodesic distance from source voxel to target voxel

Illustration of the maps (transported atlas) and displacement on the geodesic as a function of α .

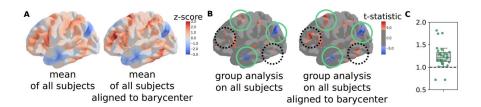
Aligning pairs of individuals with FUGW



- Aligning with FUGW leads to significantly increased correlations across subjects.
- Similar gains on other types of stimuli and acquisition time.

Aligning individuals to a FUGW barycenter

$$\boldsymbol{\mathcal{X}^B} = (\boldsymbol{F^B}, \boldsymbol{D^B}, \boldsymbol{w^B}) \in \operatorname*{arg\,min}_{\boldsymbol{\mathcal{X}}} \sum_{s \in \mathcal{S}} \mathrm{FUGW}(\boldsymbol{\mathcal{X}^s}, \boldsymbol{\mathcal{X}})$$



Principle

- We compute a barycenter of different subjects (with fixed anatomy).
- FUGW barycenter significantly increases statistical power of group averages