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Graphs are everywhere
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e Classical approach: spectral and Fourier based analysis and processing (GNN)

e What | will talk about: modeling graph as probability distributions (and use OT)

3/20



Table of content

Optimal Transport and divergences between graphs
Gromov-Wasserstein and Fused Gromov-Wasserstein
Graphs seen as distributions for GW

Relaxing the marginals constraints

Learning on graphs with optimal transport
OT plan for graph alignment
GW barycenters and applications
Dictionary learning with OT
Structured graph prediction with OT

Graph classification with OT

4/20



Optimal Transport and divergences
between graphs



Gromov-Wasserstein and Fused Gromov-Wasserstein

BES

ldx (2, 2") — dy (y.y/)

Inspired from Gabriel Peyré

GW for discrete distributions [Memoli, 2011]
GWH (s, i) = min Z |Di e — D4 |PTs,5 Try

TE (ps,pmt
(n M)i#j#k’l

with s = 3%, a:idx; and pe = 35, b;0,¢ and Dix = |[x7 — xill, Dy, = |x5 = x|
e Distance between metric measured spaces : across different spaces.
e Search for an OT plan that preserve the pairwise relationships between samples.
e Entropy regularized GW proposed in [Peyré et al., 2016].
e Fused GW interpolates between Wass. and GW [Vayer et al., 2018].
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Gromov-Wasserstein and Fused Gromov-Wasserstein

FGW for discrete distributions [Vayer et al., 2018]
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with s = 3%, a:idx; and gy = 35, b;0,¢ and Dix = |[x7 — xill, Dy, = ||x5 — x|
e Distance between metric measured spaces : across different spaces.
e Search for an OT plan that preserve the pairwise relationships between samples.
e Entropy regularized GW proposed in [Peyré et al., 2016].
e Fused GW interpolates between Wass. and GW [Vayer et al., 2018].

5/20



Gromov-Wasserstein between graphs

eoce .
XX eere
g? } K= Zz hié(%‘ﬂi)
S )= S,

¥ — .
®:00 ;. ,f? }“X_Z"hzé”“
e 0@
Graph as a distribution (D, F, h)
e The positions x; are implicit and represented as the pairwise matrix D.

e Possible choices for D : Adjacency matrix Laplacian, Shortest path, ...

XXX

Adjacency
<™y

Shortest path
matrix

xe

e The node features can be compared between graphs and stored in F.

e h; are the masses on the nodes of the graphs (uniform by default).
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Unbalanced and semi-relaxed GW

Unbalanced Gromov-Wasserstein [Séjourné et al., 2020]
min > D — DjlPTi; Tii + A Dy(T1pm,a) + XDy (T ' 1,,b)

TeMuspe) 0
e The marginal constraints are relaxed by penalizing with divergence D.,.
e Partial GW proposed in [Chapel et al., 2020]
e Unbalanced FGW [Thual et al., 2022] and Low rank [Scetbon et al., 2023].

Semi-relaxed (F)GW [Vincent-Cuaz et al., 2022a]
min Z |D77k — D;-’l|pT¢,j Tkyl

T7>0,T1,,=a
oo 0,5,k

e Second marginal constraint relaxed: optimal weights b w.r.t. GW.
e Very fast solver (Frank-Wolfe) because constraints are separable

GW(C, h,C,h)=0.219 srGW(C, h, C) = 0.05 srGW(C, h,C) =0.113
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Learning on graphs with optimal
transport



GW and FGW : the swiss army knife of OT on graphs

Y
o
ldx (x,a") = dy (y.9)

GW and extensions

e GW [Memoli, 2011] and FGW [Vayer et al., 2018] are versatile distances for graph
and structured data seen as distribution.

e Unbalanced [Séjourné et al., 2020] and semi-relaxed [Vincent-Cuaz et al., 2022a].

GW tools
e OT plan gives interpretable alignment between graphs.
e GW geometry allows barycenter and interpolation between graphs.

e GW provides similarity between graphs (data fitting).
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OT plan for graph alignment

Source

Targets

Brain alignment between individuals with unbalanced FGW [Thual et al., 2022]

Source subject s

Et

Target subject t
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OT plan for graph alignment

Shape matching between surfaces with GW [Solomon et al., 2016]
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Source Targets

Brain alignment between individuals with unbalanced FGW [Thual et al., 2022]
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OT plan for graph alignment
2016]

Shape matching between surfaces with GW [Solomon et al.,

Source Targets
Brain alignment between individuals with unbalanced FGW [Thual et al., 2022]
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(F)GW barycenter

Euclidean barycenter FGW barycenter
A (D2, pi2)
€y I3 (Dh/h) (D3:H3)
min Y, Agllx — zx||? De{gguZMJCJW(Di,D,m,M)
X )

FGW barycenter

e Estimate FGW barycenter using Fréchet means (Proposed in [Peyré et al., 2016]
for GW).

e Barycenter optimization solved via block coordinate descent (on T, D, {a;};).

e Use for data augmentation /mixup in [Ma et al., 2023].
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(F)GW barycenter

Noiseless graph Noisy graphs samples
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(F)GW barycenter

Noiseless graph Noisy graphs samples Barycenter

2R S E B P
SIECHN 328

e Estimate FGW barycenter using Fréchet means (Proposed in [Peyré et al., 2016]
for GW).

e Barycenter optimization solved via block coordinate descent (on T, D, {a;}:).

FGW barycenter

e Use for data augmentation /mixup in [Ma et al., 2023].
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FGW for graphs based clustering

Centroids

Training dataset examples

cluster 1

cluster 2

cluster 3

cluster 4

e Clustering of multiple real-valued graphs. Dataset composed of 40 graphs (10
graphs x 4 types of communities)

e k-means clustering using the F'GW barycenter
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FGW baryenter for community clustering

Graph with communities Approximate Graph Clustering with transport matrix

Graph approximation and community clustering [Vayer et al., 2018]
min .FgW(D7D07M,,LL0)
D,p

e Approximate the graph (Do, o) with a small number of nodes.

OT matrix give the clustering affectation.
e Semi-relaxed GW estimates cluster proportions [Vincent-Cuaz et al., 2022a].

e Connections with spectral clustering [Chowdhury and Needham, 2021].

Connection with Dimensionality reduction [Van Assel et al., 2023].
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FGW baryenter for community clustering

GW(C, h, 15, h)=0.235 GW(C, h,15,h)=0.274 srGW(C, h, 13) = 0.087 srGW(C, h, 13) = 0.087
(ami=0.66) (ami=0.54) (ami=1.0) (ami=1.0)

Graph approximation and community clustering [Vayer et al., 2018]
min }-gW(D7DO7/'qu’O)
D,p

e Approximate the graph (Do, 110) with a small number of nodes.

e OT matrix give the clustering affectation.

e Semi-relaxed GW estimates cluster proportions [Vincent-Cuaz et al., 2022a].
e Connections with spectral clustering [Chowdhury and Needham, 2021].

e Connection with Dimensionality reduction [Van Assel et al., 2023].
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Graph representation learning: Dictionary Learning

Examples GDL unmixing w® with A =0.001
\? o Class1

Class 2 mind?,,(B({1 Nl ),C) %
7

Class 3

Representation learning for graphs

1 ~
{Crlr{wi}i Z

e Learn a dictionary {Cy}x of graph templates to describe a continuous manifold.

The representation is learned by minimizing the (F)GW distance between the

graph reconstruction from the embedding in the dictionary.

Online Graph Dictionary learning : Linear model [Vincent-Cuaz et al., 2021].
C(w) =Y, wiCy

e GW Factorization : Nonlinear (GW barycenter) model [Xu, 2020].

13/20



Graph representation learning: Dictionary Learning

Examples GDL unmixing w® with A = 0.001
\2 o Class1

Class 2 mindj, (B({l N,),C) K %

Class 3

Representation learning for graphs

1 ~
_ min  — GW(C;, C(wy))
{Crlr{witi XZ:

e Learn a dictionary {Cy}x of graph templates to describe a continuous manifold.

The representation is learned by minimizing the (F)GW distance between the

graph reconstruction from the embedding in the dictionary.
Online Graph Dictionary learning : Linear model [Vincent-Cuaz et al., 2021].
e GW Factorization : Nonlinear (GW barycenter) model [Xu, 2020].

~

C(w) = argming >, wxGW(C, Ci)
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Structured prediction with conditional FGW barycenters

Structured prediction with GW barycenter [Brogat-Motte et al., 2022]
F(x) = E(w(x)) = argming ¥, wi(x)GW (C, ;)
e Prediction of the graph with a GW barycenter with weights conditioned by x.

e Dictionary {Cj} and conditional weights w(z) learned simultaneously with

. 1
min N;GW(f(Xz)7Cz)

{Crlr.w()

e Both parametric and non parametric estimators [Brogat-Motte et al., 2022].
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Structured prediction with conditional FGW barycenters
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SOOI D D
ro @ WL S L ST A L

L
+ t
30 3.5 4A(] 4.5 5.(] X

Structured prediction with GW barycenter [Brogat-Motte et al., 2022]
f(x) = C(w(x)) = argming 3, wi,(x)GW (C, C;)

e Prediction of the graph with a GW barycenter with weights conditioned by x.

e Dictionary {Cj} and conditional weights w(z) learned simultaneously with

1
min — GW(f(xi),C;)
Citew() N ;

e Both parametric and non parametric estimators [Brogat-Motte et al., 2022].
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Graph Classification with OT

Graph kernels and FGW
e Graph kernels still SOTA on many datasets : WWL [Togninalli et al., 2019].
e FGW can be used in a non-positive "kernel” [Vayer et al., 2019a].

e Graph dictionary learning methods provide euclidean embeddings for kernels
[Vincent-Cuaz et al., 2021, Vincent-Cuaz et al., 2022a].

Graph Neural Networks [Bronstein et al., 2017]
¢'u,l(./}|f25f5ﬂ;) ¢u, (I 15 551)

1 ¢.,,,(4;)Tf\ \gb,,”(f,)
’(/z) LN ] / ¢u,,(lz)

@, (%)
o) R0, 0
Dy, (1)

e Each layer of the GNN compute features on graph node using the values from the
connected neighbors : message passing principle.

e The final pooling step must remain invariant to permutations (min, max, mean).

e Can we encode graphs as distributions in GNN?
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Template based Graph Neural Network with OT Distances

TEGW layer|
(C1,Fy,hy)

0.2 \
[ | B
0.1

T (G o) Yy
. v . R
C, <c,‘¢u<F,),h,>;{:: ----- »—» D -1
0 MLP

G -

fon
. _ } A ]
F; E A Templates : R¥
NN T (Ck,Fk,hk)

Template based FGW layer (TFGW) [Vincent-Cuaz et al., 2022b]

e Principle: represent a graph through its distances to learned templates.
e Novel pooling layer derived from OT distances.

e New end-to-end GNN models for graph-level tasks.

e Learnable parameters are illustrated in red above.
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TFGW benchmark

category model MUTAG PTC | ENZYMES | PROTEIN | NCIL IMDB-B | IMDB-M | COLLAB
Ours TFGW ADJ (L=2) || 96.4(3.3) | 72.4(5.7) | 73.8(4.6) | 82.9(2.7) | 88.1(2.5) || 78.3(3.7) | 56.8(3.1) | 84.3(2.6)
(éu=GIN) | TFGW SP (L=2) || 94.8(3.5) | 70.8(6.3) | 75.1(5.0) | 82.0(3.0) | 86.1(2.7) | 74.1(5.4) | 54.9(3.9) | 80.9(3.1)
OT emb. OT-GNN (L=2) || 91.6(4.6) | 68.0(75) | 66.9(3.8) | 76.6(4.0) | 82.9(2.1) || 67.5(3.5) | 52.1(3.0) | 80.7(2.9)
OT-GNN (L=4) | 92.1(3.7) | 65.4(9.6) | 67.3(43) | 78.0(5.1) | 83.6(2.5) | 69.1(4.4) | 51.9(2.8) | 81.1(2.5)
WEGL 91.0(3.4) | 66.0(2.4) | 60.0(2.8) | 73.7(1.9) | 75.5(1.4) | 66.4(2.1) | 50.3(1.0) | 79.6(0.5)
GNN PATCHYSAN 01.6(4.6) | 58.9(3.7) | 55.9(45) | 75.1(3.3) | 76.9(2.3) | 62.9(3.9) | 45.9(2.5) | 73.1(2.7)
GIN 00.1(4.4) | 63.1(3.9) | 62.2(3.6) | 76.2(2.8) | 82.2(0.8) || 64.3(3.1) | 50.9(1.7) | 79.3(1.7)
DropGIN 89.8(6.2) | 62.3(6.8) | 65.8(2.7) | 76.9(4.3) | 81.9(2.5) | 66.3(4.5) | 51.6(3.2) | 80.1(2.8)
PPGN 90.4(5.6) | 65.6(6.0) | 66.9(4.3) | 77.1(4.0) | 82.7(1.8) | 67.2(4.1) | 51.3(2.8) | 81.0(2.1)
DIFFPOOL 86.1(2.0) | 45.0(5.2) | 61.0(3.1) | 71.7(1.4) | 80.9(0.7) || 61.1(2.0) | 45.8(1.4) | 80.8(1.6)
Kernels FGW - ADJ 82.6(7.2) | 55.3(8.0) | 722(4.0) | 72.4(47) | 74.4(2.1) | 70.8(3.6) | 48.9(3.9) | 80.6(1.5)
FGW - SP 84.4(73) | 55.5(7.0) | 70.5(6.2) | 74.3(3.3) | 72.8(1.5) || 65.0(4.7) | 47.8(3.8) | 77.8(2.4)
WL 87.4(5.4) | 56.0(3.9) | 69.5(3.2) | 74.4(2.6) | 85.6(1.2) | 67.5(4.0) | 48.5(4.2) | 78.5(1.7)
WWL 86.3(7.9) | 52.6(6.8) | 71.4(5.1) | 73.1(1.4) | 85.7(0.8) | 71.6(3.8) | 52.6(3.0) | 8L.4(2.1)

Gain with TFGW +4.3 +4.4 +2.9 +4.9 +2.4 +6.7 +4.2 +2.9

e Comparison with state of the art approach from GNN and graph kernel methods.

e Systematic and significant gain of performance with GIN+-TFGW.
e Gain independent of GNN architecture (GIN or GAT).
e 1 year after publication, world rankings of TFGW on " papers with code”:

#1 NCI1, #2 COLLAB ENZYMES IMDB-M, #3 MUTAG, PROTEIN.
e Experiments suggests that TFGW has expressivity beyond Weisfeiler-Lehman

Isomorphism tests.
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Conclusion

Examples GDL unmixing w'® with A = 0.001
2

C § Pk

|dx (x,2") = dy (y,9)

Gromov-Wasserstein family for graph modeling
e Graphs modelled as distributions, GV can measure their similarity.
e Extensions of GW for labeled graphs and Frechet means can be computed.

e Weights on the nodes are important but rarely available : relax the constraints
[Séjourné et al., 2020] or even remove one of them [Vincent-Cuaz et al., 2022a].

e Many applications of FGW from brain imagery [Thual et al., 2022] to Graph
Neural Networks [Vincent-Cuaz et al., 2022b].
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Thank you

Python code available on GitHub:

[o ey oe [
@ ® @ ® © oo ®
@ @ © ® o-e
[ a4 [ e o-®
o-e o-e o-e

https://github.com/Python0T/POT

OT LP solver, Sinkhorn (stabilized, e—scaling, GPU)
Domain adaptation with OT.

Barycenters, Wasserstein unmixing.

Gromov Wasserstein.

Differentiable solvers for Numpy/Pytorch/tensorflow/Cupy

For Jax : OTT-JAX at https://ott-jax.readthedocs.io/

Tutorial on OT for ML:
http://tinyurl.com/otml-isbi

Papers available on my website:

https://remi.flamary.com/
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https://github.com/PythonOT/POT
https://ott-jax.readthedocs.io/
http://tinyurl.com/otml-isbi
https://remi.flamary.com/

OTGame (OT Puzzle game on android)

OTGame

'
{ """ standard game 1/9 Timer:19s | New
\

https://play.google.com/store/apps/details?id=com.flamary.otgame
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Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2

FE

° t XS u

@ Source s .. L
® Target u;

%

Entropic regularization [Cuturi, 2013]

We(ps, pe) = __min (T,C)p+ey TijlogTy;

TE(ps,kt) i
e Regularization with the negative entropy —H(T).
e Looses sparsity, but strictly convex optimization problem [Benamou et al., 2015].
e Can be solved with the very efficient Sinkhorn-Knopp matrix scaling algorithm.

e Loss and OT matrix are differentiable and have better statistical properties
[Genevay et al., 2018].
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Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2
oo 8 ®
LIS [}
® oo {o

@ Source s
@ Target u

.. :K.

Entropic regularization [Cuturi, 2013]

Welpos ) = | _min (T, C)p + eZT log Ty,

Regularization with the negative entropy —H (T).
e Looses sparsity, but strictly convex optimization problem [Benamou et al., 2015].
e Can be solved with the very efficient Sinkhorn-Knopp matrix scaling algorithm.

e Loss and OT matrix are differentiable and have better statistical properties
[Genevay et al., 2018].

21/20



Approximating GW in the linear embedding

GW Upper bond [Vincent-Cuaz et al., 2021]
Let two graphs of order N in the linear embedding <2:s wgl)ﬁs> and (ZS wg)ﬁ) ,
the GW divergence can be upper bounded by

owe [ Y wDy, > w?PDs | < W - w?|um (1)
s€[S] s€[S]

with M a PSD matrix of components M), = (DrD,, ﬁth>F, Dy, = diag(h).
Discussion

e The upper bound is the value of GW for a transport 7' = diag(h) assuming that
the nodes are already aligned.

e The bound is exact when the weights w® and w® are close.
e Solving GW with FW si O(N?®log(N)) at each iterations.

e Computing the Mahalanobis upper bound is O(S?) : very fast alterative to GW
for nearest neighbors retrieval.
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Solving the Gromov Wasserstein optimization problem

Optimization problem

GWP (s, =  min Dy — D5 y|PTy The
= i, 5 PP

t t

with s =37, aidx; and pe =37, b;0,0 and Dy = [Ix7 — x|, Djy =[x — x|

e Quadratic Program (Wasserstein is a linear program).
e Nonconvex, NP-hard, related to Quadratic Assignment Problem (QAP).

e Large problem and non convexity forbid standard QP solvers.

Optimization algorithms
e Local solution with conditional gradient algorithm
(Frank-Wolfe) [Frank and Wolfe, 1956].

e Each FW iteration requires solving an OT problems.

e Gromov in 1D has a close form (solved in discrete with
a sort) [Vayer et al., 2019b].

e With entropic regularization, one can use mirror descent
[Peyré et al., 2016] or fast low rank approximations

[Scetbon et al., 2021].
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Entropic Gromov-Wasserstein

Optimization Problem

GWE (o, pe) = min > Dy — D[Py Teu+ € TijlogTi;  (2)
Tel(us,nt) | Tl i,j

with ps = 37, aidxs and py = 37, bj5m§ and D, = ||x — x; ||, Dj,; = [|x5 — x{||

J

e Smoothing the original GW with a convex and smooth entropic term.

Solving the entropic G\ [Peyré et al., 2016]
e Problem (2) can be solved using a KL mirror descent.

e This is equivalent to solving at each iteration ¢

T(H_l) = ’1:'[‘1161% <T, G(f)>F +e€ Z Tiﬁj lOg Ti’]’
2,7

Where Gitj) =2, 1Dk — D;A”T,itl) is the gradient of the GW loss at previous
point T,
e Problem above solved using a Sinkhorn-Knopp algorithm of entropic OT.

e Very fast approximation exist for low rank distances [Scetbon et al., 2021].
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Solving the unmixing problem

Optimization problem

. 2 - 2
min - GW;3 > w.Ds, D | - \wl|3
s€[S]
e Non-convex Quadratic Program w.r.t. T and w.
e GW for fixed w already have an existing Frank-Wolfe solver.

e We proposed a Block Coordinate Descent algorithm

BCD Algorithm for sparse GW unmixing [Tseng, 2001]
1. repeat
2. Compute OT matrix T' of GW3(D, ", w,D;), with FW [Vayer et al., 2018].
3:  Compute the optimal w given T with Frank-Wolfe algorithm.
4. until convergence

e Since the problem is quadratic optimal steps can be obtained for both FW.

e BCD convergence in practice in a few tens of iterations.
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GDL Extensions

GDL on labeled graphs

e For datasets with labeled graphs, on can learn simultaneously a dictionary of the
structure {D.};c(s] and a dictionary on the labels/features {F.}¢[g).-

e Data fitting is Fused Gromov-Wasserstein distance FGW, same stochastic
algorithmm.

Dictionary on weights

K
win S 0w (DY, wl DL A®, v ) - Mw® [ — ulv
{(wﬁ),vi(k))}k k=1 s s
{(Ds,hs)}s

e \We model the graphs as a linear model on the structure and the node weights

(D™ R®) <Z w®D,, 3 v,i.’“’hs>

e This allows for sparse weights h so embedded graphs with different order.
e We provide in [Vincent-Cuaz et al., 2021] subgradients of GW w.r.t. the mass h.
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Experiments - Unsupervised representation learning

Graph from dataset Model unif. h (GW=0.09) Model est. h (GW=0.08)

Comparison of fixed and learned weights dictionaries
e Graph taken from the IMBD dataset.
e Show original graph and representation after projection on the embedding.
e Uniform weight h has a hard time representing a central node.

Estimated weights b recover a central node.

e In addition some nodes are discarded with 0 weight (graphs can change order).
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Experiments - Clustering benchmark

Table 1. Clustering: Rand Index computed for benchmarked approaches on real datasets.

no attribute discrete attributes real attributes
models IMDB-B IMDB-M MUTAG PTC-MR BZR COX2 ENZYMES PROTEIN
GDL(ours) | 51.64(0.59) | 55.41(0.20) | 70.89(0.11) | 51.90(0.54) | 66.42(1.96) | 59.48(0.68) | 66.97(0.93) | 60.49(0.71)
GWF-r 51.24(0.02) | 55.54(0.03) - - 52.42(2.48) 56.84(0.41) | 72.13(0.19) | 59.96(0.09)

GWF-f | 5047(034) | 54.01(0.37) - - 51.65(296) | 52.86(0.53) | 71.64(0.31) | 58.89(0.39)
GW-k 50.32(0.02) | 53.65(0.07) | 57.56(1.50) | 50.44(0.35) | 56.72(0.50) | 52.48(0.12) | 66.33(1.42) | 50.08(0.01)
sC 50.1100.10) | 544009.45) | 50.82(2.71) | 50.45(0.31) | 42.73(7.06) | 4132(6.07) | 70.74(10.60) | 49.92(1.23)

Clustering Experiments on real datasets

e Different data fitting losses:

e Graphs without node attributes : Gromov-Wasserstein.
e Graphs with node attributes (discrete and real): Fused Gromov-Wasserstein.

e We learn a dictionary on the dataset and perform K-means in the embedding
using the Mahalanobis distance approximation.

e Compared to GW Factorization (GWF) [Xu, 2020] and spectral clustering.

e Similar performance for supervised classification (using GW in a kernel).
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