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R. Flamary - CMAP, École Polytechnique, Institut Polytechnique de Paris

January 26 2022

Statistics & Computer Science Day for Data Science, Paris-Saclay

1 / 26



Collaborators

N. Courty A. Rakotomamonjy D. Tuia A. Habrard M. Perrot M. Ducoffe
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Optimal Transport and divergences

between graphs



Optimal transport

� Problem introduced by Gaspard Monge in his memoire [Monge, 1781].

� How to move mass while minimizing a cost (mass + cost)

� Monge formulation seeks for a mapping between two mass distribution.

� Reformulated by Leonid Kantorovich (1912–1986), Economy nobelist in 1975

� Focus on where the mass goes, allow splitting [Kantorovich, 1942].

� Applications originally for resource allocation problems
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Optimal transport between discrete distributions

Distributions

Source μs
Target μt

Matrix C OT matrix γ

Kantorovitch formulation : OT Linear Program
When µs =

∑ns
i=1 aiδxs

i
and µt =

∑nt
i=1 biδxt

i

W p
p (µs, µt) = min

T∈Π(µs,µt)

{
〈T,C〉F =

∑
i,j

Ti,jci,j

}
where C is a cost matrix with ci,j = c(xsi ,x

t
j) = ‖xsi − xtj‖p and the constraints are

Π(µs, µt) =
{
T ∈ (R+)ns×nt |T1nt = a,TT1ns = b

}
� Wp(µs, µt) is called the Wasserstein distance (EMD for p = 1).

� Entropic regularization solved efficiently with Sinkhorn [Cuturi, 2013].

� Classical OT needs distributions lying in the same space → Gromov-Wasserstein.
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Gromov-Wasserstein divergence

Inspired from Gabriel Peyré

GW for discrete distributions [Memoli, 2011]

GWp(µs, µt) =

(
min

T∈Π(µs,µt)

∑
i,j,k,l

|Di,k −D′j,l|pTi,j Tk,l
) 1

p

with µs =
∑
i aiδxs

i
and µt =

∑
j bjδxtj and Di,k = ‖xsi − xsk‖, D′j,l = ‖xtj − xtl‖

� Distance between metric measured spaces : across different spaces.

� Search for an OT plan that preserve the pairwise relationships between samples.

� Invariant to isometry in either spaces (e.g. rotations and translation).

� Entropy regularize GW proposed in [Peyré et al., 2016].
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Gromov-Wasserstein between graphs

Modeling the graph structure with a pairwise matrix D

� An undirected graph G := (V,E) is defined by V = {xi}i∈[N] set of the N nodes

and E = {(xi,xj)|xi ↔ xj} set of edges.

� Structure represented as a symmetric matrix D of relations between the nodes.

� Possible choices : Adjacency matrix (used in this study), Laplacian matrix,

Shortest path or geodesic distance matrix.

Graph as a distribution (D,h)
� Graph represented as a discrete distribution:

µX =
∑
i

hiδxi

� The positions xi are implicit and represented

as the pairwise matrix D.

� hi are the masses on the nodes of the graphs

(uniform by default). 7 / 26



Applications of GW [Solomon et al., 2016]

Shape matching between 3D and 2D surfaces

Multidimensional scaling (MDS) of shape collection
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Attributed graphs as distributions

}
}

}
� Joint distribution µ in the feature/structure space.

� Nodes are weighted by their mass hi.

� Structure encoded by xi (no common metric between two different graphs).

� Features values ai can be compared through the common metric.

� Importance of the joint modeling:
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Fused Gromov-Wasserstein distance

a

b

Fused Gromov Wasserstein distance [Vayer et al., 2020]
µs =

∑n
i=1 hiδxi,ai and µt =

∑m
j=1 gjδyj ,bj

FGWp,q,α(D,D′, µs, µt) =

(
min

T∈Π(µs,µt)

∑
i,j,k,l

(
(1−α)Cqi,j+α|Di,k−D

′
j,l|q

)p
Ti,j Tk,l

) 1
p

with Di,k = ‖xi − xk‖ and D′j,l = ‖yi − yl‖ and Ci,j = ‖ai − bj‖
� Parameters q > 1, ∀p ≥ 1.

� α ∈ [0, 1] is a trade off parameter between structure and features.
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FGW Properties

FGWp,q,α(D,D′, µs, µt) =

(
min

T∈Π(µs,µt)

∑
i,j,k,l

(
(1−α)Cqi,j+α|Di,k−D

′
j,l|q

)p
Ti,j Tk,l

) 1
p

Metric properties [Vayer et al., 2020]

� FGW defines a metric over structured data with measure and features

preserving isometries as invariants.

� FGW is a metric for q = 1 a semi metric for q > 1, ∀p ≥ 1.

� The distance is nul iff :

� There exists a Monge map T#µs = µt.

� Structures are equivalent through this Monge map (isometry).

� Features are equal through this Monge map.

Bounds and convergence to finite samples [Vayer et al., 2020]

� FGW(µs, µt) is lower bounded by (1− α)W(µA, µB)q and αGW(µX , µY )q

� Convergence of finite samples when X = Y with d = Dim(X ) +Dim(Ω) :

E[FGW(µ, µn)] = O
(
n−

1
d

)
11 / 26



FGW barycenter

DD

DD

D

FGW barycenter p = 1, q = 2

� Estimate FGW barycenter using Frechet means (similar to [Peyré et al., 2016]).

� Barycenter optimization solved via block coordinate descent (on T, D, {ai}i).

� Can chose to fix the structure (D) or the features {ai}i in the barycenter.

� aii, and D updates are weighted averages using T.
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FGW barycenter on labeled graphs

Noiseless graph Noisy graphs samples

Barycenter of noisy graphs

� We select a clean graph, change the number of nodes and add label noise and

random connections.

� We compute the barycenter on n = 15 and n = 7 nodes.

� Barycenter graph is obtained through thresholding of the D matrix.
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FGW for graphs based clustering
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Training dataset examples 

Centroids
iter

� Clustering of multiple real-valued graphs. Dataset composed of 40 graphs (10

graphs × 4 types of communities)

� k-means clustering using the FGW barycenter
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FGW baryenter for community clustering

Graph with communities Approximate Graph Clustering with transport matrix

Graph approximation and community clustering

min
D,µ

FGW(D,D0, µ, µ0)

� Approximate the graph (D0, µ0) with a small number of nodes.

� Can be seen as a FGW (compressed) barycenter for one graph.

� OT matrix give the clustering affectation.

� Works for signle and multiple modes in the clusters.
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GW and FGW for graph modeling

a

b

Gromov-Wasserstein distance [Memoli, 2011]

� Divergence between distributions across metric spaces.

� Can be used to measure similarity between graphs seen as distribution their

pairwise node relationship.

Fused Gromov-Wasserstein distance [Vayer et al., 2018]

� Model labeled structured data as joint structure/labels distributions.

� New versatile method for comparing structured data based on Optimal Transport

� New notion of barycenter of structured data such as graphs or time series

How to use GW/FGW to model data variability in a dataset of graphs?
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Online Graph Dictionary Learning



Datasets of graphs

Dataset 1 Dataset 2

SBM with balanced communities {1, 2, 3}. Two communities of variable proportions.

� We have access to large datasets of graphs with variable number of nodes.

� How to model the variability of those graphs?

� A natural formulation is to use factorization.

� We propose to use a linear model for representing te graph associated to and

estimation of the linear basis : Dictionary learning.
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Linear model

Linear modeling of graphs

D ≈
∑
s∈[S]

wsDs (1)

� Approximate a given graph structure D as a non-negative weighted sum of

template graphs Ds.

� w ∈ ΣS are the weights in the simplex.

� {Ds}s is the dictionary of templates that all have the same order (nb. of nodes).
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Gromov-Wasserstein Linear unmixing

Displacement

Probability
simplex
constraint

Probability
simplex
constraint

Displacement

Sparse linear unmixing with Gromov-Wasserstein

min
w∈ΣS

GW2
2

∑
s∈[S]

wsDs , D

 (2)

� Estimate the linear representation on the simplex w minimizing the GW distance

w.r.t. the target graph D (non-negative unmixing).

� w is a vector embedding of the graph D in the dictionary.

� GW between graphs
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Graph Dictionary Learning

GDL optimization problem

min
{w(k)}k∈[K]

{Ds}s∈[S]

K∑
k=1

GW2
2

D(k),
∑
s∈[S]

w(k)
s Ds

− λ‖w(k)‖22 (3)

� On a dataset of K undirected graphs {D(k) ∈ SN(k)(R)}k∈[K].

� We want to estimate simultaneously the unmixing w(k) of each graphs and the

optimal dictionary {Ds}s∈[S].

� Very similar to classical DL (Non-negative Matrix Factorization) approach but

with GW as a data fitting term.

� We propose to solve it an adaptation of the online algorithm [Mairal et al., 2009]

Stochastic/Online update [Vincent-Cuaz et al., 2021]

1: Sample a minibatch of graphs B := {D(k)}k∈B .

2: Compute {(w(k),T (k))}k∈[B] from solving B independent unmixings.

3: Compute the gradient ∇̃Ds
on the minibatch with fixed {(w(k),T (k))}k∈[B].

4: Projected gradient step , ∀s ∈ [S],Ds ← ProjSN (R)(Ds − ηC∇̃Ds
)
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Experiments - Unsupervised representation learning

� Stochastic block model with {1, 2, 3} blocks
Dataset Learned atoms

Atom 1 (matrix)

0.4

0.6

0.8

1.0
Atom 2 (matrix)

0.25

0.50

0.75

Atom 3 (matrix)

0.00

0.25

0.50

0.75

Atom 1 (graph) Atom 2 (graph) Atom 3 (graph)

Embedding space
GDL unmixing w(k) with = 0.001

Class 1

Class 2

Class 3

GDL unmixing w(k) with = 0

Class 1

Class 2

Class 3

Examples

1

1

1

2

2

2

3

3

3
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Experiments - Unsupervised representation learning

w= [0.0, 1.0] w= [0.2, 0.8] w= [0.4, 0.6] w= [0.6, 0.4] w= [0.8, 0.2] w= [1.0, 0.0]

Atom 1 Atom 2
Interpolation

Learned Dictionary: Interpolation ∼ 1D Manifold

Dataset
� Stochastic block model with 2 blocks

and varying proportions of block size.

� GDL with 2 atoms can recover the

extreme points.

� Linear interpolation recover a

continuous variation of proportion.
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Experiments - Online Learning

� Streaming graphs: Stochastic update for each new incoming graph

� Dataset: TWITCH-EGOS

- 120.000+ graphs

- 2 classes

- shared hub structure

Data A Data B

� Simulated stream: data A (class 1) → data B (class 2)
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Experiments - Online Learning

� Streaming graphs: Stochastic update for each new incoming graph

� Dataset : TRIANGLES

- 30.000+ labeled graphs

- 10 classes

� Simulated stream: data A (4 classes) → data B (3 classes) → data C (3 classes)

24 / 26



Conclusion

Gromov-Wasserstein family for graph modeling

� Graphs modelled as distributions, GW can measure their similarity.

� Extensions of GW for labeled graphs and Frechet means can be computed.

� Nonlinear and linear dictionaries of graphs using GW provide a good modeling.

� Weights on the nodes are important but rarely available : relax the constraints

[Séjourné et al., 2020] or even remove one of them [Vincent-Cuaz et al., 2022].

Open questions and new research

� Stability of the GW plan to perturbations of D (related to the GDL upper bound).

� Use GW as a ”kernel” for structured prediction (conditional GW barycenters).
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Thank you

Python code available on GitHub:

https://github.com/PythonOT/POT

� OT LP solver, Sinkhorn (stabilized, ε−scaling, GPU)

� Domain adaptation with OT.

� Barycenters, Wasserstein unmixing.

� Wasserstein Discriminant Analysis.

Tutorial on OT for ML:

http://tinyurl.com/otml-isbi

Papers available on my website:

https://remi.flamary.com/
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Entropic regularized optimal transport

Distributions

Source s

Target t

Reg. OT matrix with =1e-3 Reg. OT matrix with =1e-2

Entropic regularization [Cuturi, 2013]

Wε(µs, µt) = min
T∈Π(µs,µt)

〈T,C〉F + ε
∑
i,j

Ti,j log Ti,j

� Regularization with the negative entropy −H(T).

� Looses sparsity, but strictly convex optimization problem [Benamou et al., 2015].

� Can be solved with the very efficient Sinkhorn-Knopp matrix scaling algorithm.

� Loss and OT matrix are differentiable and have better statistical properties

[Genevay et al., 2018].
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Approximating GW in the linear embedding

GW Upper bond [Vincent-Cuaz et al., 2021]

Let two graphs of order N in the linear embedding
(∑

s w
(1)
s Ds

)
and

(∑
s w

(2)
s Ds

)
,

the GW divergence can be upper bounded by

GW2

∑
s∈[S]

w(1)
s Ds,

∑
s∈[S]

w(2)
s Ds

 ≤ ‖w(1) −w(2)‖M (4)

with M a PSD matrix of components Mp,q =
〈
DhDp,DqDh

〉
F

, Dh = diag(h).

Discussion

� The upper bound is the value of GW for a transport T = diag(h) assuming that

the nodes are already aligned.

� The bound is exact when the weights w(1) and w(2) are close.

� Solving GW with FW si O(N3 log(N)) at each iterations.

� Computing the Mahalanobis upper bound is O(S2) : very fast alterative to GW

for nearest neighbors retrieval.
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Solving the Gromov Wasserstein optimization problem

Optimization problem

GWp
p(µs, µt) = min

T∈Π(µs,µt)

∑
i,j,k,l

|Di,k −D′j,l|pTi,j Tk,l

with µs =
∑
i aiδxs

i
and µt =

∑
j bjδxtj and Di,k = ‖xsi − xsk‖, D′j,l = ‖xtj − xtl‖

� Quadratic Program (Wasserstein is a linear program).

� Nonconvex, NP-hard, related to Quadratic Assignment Problem (QAP).

� Large problem and non convexity forbid standard QP solvers.

Optimization algorithms

� Local solution with conditional gradient algorithm

(Frank-Wolfe) [Frank and Wolfe, 1956].

� Each FW iteration requires solving an OT problems.

� Gromov in 1D has a close form (solved in discrete with

a sort) [Vayer et al., 2019].

� With entropic regularization, one can use mirror descent

[Peyré et al., 2016] or fast low rank approximations

[Scetbon et al., 2021].
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Entropic Gromov-Wasserstein

Optimization Problem

GWp
p,ε(µs, µt) = min

T∈Π(µs,µt)

∑
i,j,k,l

|Di,k −D′j,l|pTi,j Tk,l + ε
∑
i,j

Ti,j log Ti,j (5)

with µs =
∑
i aiδxs

i
and µt =

∑
j bjδxtj and Di,k = ‖xsi − xsk‖, D′j,l = ‖xtj − xtl‖

� Smoothing the original GW with a convex and smooth entropic term.

Solving the entropic GW [Peyré et al., 2016]

� Problem (5) can be solved using a KL mirror descent.

� This is equivalent to solving at each iteration t

T(t+1) = min
T∈P

〈
T,G(t)

〉
F

+ ε
∑
i,j

Ti,j log Ti,j

Where G
(t)
i,j = 2

∑
k,l |Di,k −D

′
j,l|pT

(t)
k,l is the gradient of the GW loss at previous

point T(k).

� Problem above solved using a Sinkhorn-Knopp algorithm of entropic OT.

� Very fast approximation exist for low rank distances [Scetbon et al., 2021].
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Solving the unmixing problem

Optimization problem

min
w∈ΣS

GW2
2

∑
s∈[S]

wsDs , D

− λ‖w‖22
� Non-convex Quadratic Program w.r.t. T and w.

� GW for fixed w already have an existing Frank-Wolfe solver.

� We proposed a Block Coordinate Descent algorithm

BCD Algorithm for sparse GW unmixing [Tseng, 2001]

1: repeat

2: Compute OT matrix T of GW2
2(D,

∑
s wsDs), with FW [Vayer et al., 2018].

3: Compute the optimal w given T with Frank-Wolfe algorithm.

4: until convergence

� Since the problem is quadratic optimal steps can be obtained for both FW.

� BCD convergence in practice in a few tens of iterations.
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GDL Extensions

GDL on labeled graphs

� For datasets with labeled graphs, on can learn simultaneously a dictionary of the

structure {Ds}s∈[S] and a dictionary on the labels/features {Fs}s∈[S].

� Data fitting is Fused Gromov-Wasserstein distance FGW, same stochastic

algorithmm.

Dictionary on weights

min
{(w(k),v(k))}k
{(Ds,hs)}s

K∑
k=1

GW2
2

(
D(k),

∑
s

w(k)
s Ds,h

(k),
∑
s

v(k)
s hs

)
− λ‖w(k)‖22 − µ‖v(k)‖22

� We model the graphs as a linear model on the structure and the node weights

(D(k),h(k)) −→

(∑
s

w(k)
s Ds,

∑
s

v(k)
s hs

)

� This allows for sparse weights h so embedded graphs with different order.

� We provide in [Vincent-Cuaz et al., 2021] subgradients of GW w.r.t. the mass h.
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Experiments - Unsupervised representation learning

Comparison of fixed and learned weights dictionaries

� Graph taken from the IMBD dataset.

� Show original graph and representation after projection on the embedding.

� Uniform weight h has a hard time representing a central node.

� Estimated weights h̃ recover a central node.

� In addition some nodes are discarded with 0 weight (graphs can change order).
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Experiments - Clustering benchmark

Clustering Experiments on real datasets

� Different data fitting losses:

� Graphs without node attributes : Gromov-Wasserstein.

� Graphs with node attributes (discrete and real): Fused Gromov-Wasserstein.

� We learn a dictionary on the dataset and perform K-means in the embedding

using the Mahalanobis distance approximation.

� Compared to GW Factorization (GWF) [Xu, 2020] and spectral clustering.

� Similar performance for supervised classification (using GW in a kernel).
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Scetbon, M., Peyré, G., and Cuturi, M. (2021).

Linear-time gromov wasserstein distances using low rank couplings and

costs.

arXiv preprint arXiv:2106.01128.
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The unbalanced gromov wasserstein distance: Conic formulation and

relaxation.

arXiv preprint arXiv:2009.04266.
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