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Introduction



Three aspects of Machine Learning

Unsupervised learning

� Extract information from unlabeled data

� Find labels (clustering) or subspaces/manifolds.

� Generate realistic data (GAN).

Supervised Learning

� Learning to predict from labeld dataset.

� Regression, Classification.

� Can use unsupervised information (DA, Semi-sup.)

Reinforcement Learning

� Let the machine experiment.

� Learn from its mistakes.

� Framework for learning to play games.

Slide stolen from Yann Lecun
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Optimal transport for machine learning
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Occurences of OT+ML in Google Scholar

Short history of OT for ML

� Recently introduced to ML (well known in image processing since 2000s).

� Computationnal OT allow numerous applications (regularization).

� Deep learning boost (numerical optimization and GAN).
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Three aspects of optimal transport for ML

Transporting with optimal transport

� Color adaptation in image [Ferradans et al., 2014].

� Style transfer [Mroueh, 2019].

� Domain adaptation [Courty et al., 2016].
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Divergence between histograms

� Use the ground metric to encode complex relations

between the bins.

� Loss for multilabel classifier [Frogner et al., 2015]

� Adversarial regularization [Fatras et al., 2021].

Divergence between empirical distributions

� Non parametric divergence between non overlapping

distributions.

� Generative modeling [Arjovsky et al., 2017].

� Data imputation [Muzellec et al., 2020].

4 / 39



Table of content

Introduction

Mapping with optimal transport

Optimal transport mapping estimation

Optimal transport for domain adaptation

Learning from histograms with Optimal Transport

Unsupervised learning

Supervised learning

Learning from empirical distributions with Optimal Transport

Unupervised learning

Supervised learning and domain adaptation

Conclusion

5 / 39
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Mapping with optimal transport
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Mapping estimation

� Barycentric mapping using the OT matrix [Ferradans et al., 2014].

� Linear Monge mapping when data supposed Gaussian [Flamary et al., 2019].

� Smooth mapping estimation

[Perrot et al., 2016, Seguy et al., 2017, Paty et al., 2020].

� Estimation for W2 using input convex neural networks [Makkuva et al., 2020].

� Can be used to linearize the Wasserstein space [Mérigot et al., 2020]
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Transporting the discrete samples

Distributions

Source s

Target t

Classt OT Reg. Entropic OT

Barycentric mapping [Ferradans et al., 2014]

T̂γ0
(xs

i ) = argmin
x

∑
j

γ0(i, j)c(x,x
t
j). (1)

� The mass of each source sample is spread onto the target samples (line of γ0).

� The mapping is the barycenter of the target samples weighted by γ0

� Closed form solution for the quadratic loss.

� Limited to the samples in the distribution (no out of sample).

� Trick: learn OT on few samples and apply displacement to the nearest point.
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Joint OT and mapping estimation
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Simultaneous OT matrix and mapping [Perrot et al., 2016]

min
T,γ∈P

⟨γ,C⟩F +
∑
i

∥T (xs
i )− T̂γ(x

s
i )∥2 + λ∥T∥2

� Estimate jointly the OT matrix and a smooth mapping approximating the

barycentric mapping.

� The mapping is a regularization for OT.

� Controlled generalization error (statistical bound).

� Linear and kernel mappings T , limited to small scale datasets.
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Large scale optimal transport and mapping estimation
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Large scale mapping estimation [Seguy et al., 2017]

� 2-step procedure:

1 (Stochastic) estimation of regularized γ̂.

2 (Stochastic) estimation of T with a neural network.

� OT solved with Stochastic Gradient Ascent in the dual.

� Convergence to the true mapping for small regularization.

� Convergence to the smooth mapping for large n

[Pooladian and Niles-Weed, 2021].
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Monge Mapping with input convex neural networks

Principle [Makkuva et al., 2020]

� For the quadratic cost OT between two smooth distribution Brenier theorem

states that the Monge mapping is the gradient of a convex function.

� Neural network can be designed to be convex wrt their input (ICNN)

[Amos et al., 2017].

� [Makkuva et al., 2020] proposed to estimate directly the Monge as a gradient of

an ICNN from the empirical distributions. mapping usin
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Seamless copy in images

Poisson image editing [Pérez et al., 2003]

� Use the color gradient from the source image.

� Use color border conditions on the target image.

� Solve Poisson equation to reconstruct the new image.

Seamless copy with gradient adaptation [Perrot et al., 2016]

� Transport the gradient from the source to target color gradient distribution.

� Solve the Poisson equation with the mapped source gradients.

� Better respect of the color dynamic and limits false colors.

Example and webcam demo: https://github.com/ncourty/PoissonGradient

11 / 39

https://github.com/ncourty/PoissonGradient


Seamless copy in images

Poisson image editing [Pérez et al., 2003]
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Monge mapping for Image-to-Image translation

Principle

� Encode image as a distribution in a DNN embedding.

� Transform between images using estimated Monge mapping.

� Linear Monge Mapping (Wasserstein Style Transfer [Mroueh, 2019]).

� Nonlinear Monge Mapping using input Convex Neural Networks

[Korotin et al., 2019].

� Allows for transformation between two images but also style interpolation with

Wasserstein barycenters.
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Domain Adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Probability Distribution Functions over the domains

Our context

� Classification problem with data coming from different sources (domains).

� Distributions are different but related.
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Unsupervised domain adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problems

� Labels only available in the source domain, and classification is conducted in the

target domain.

� Classifier trained on the source domain data performs badly in the target domain
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OT for domain adaptation : Step 1

Dataset 
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Classifier on 

Optimal transport 
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Classifier on 

Step 1 : Estimate optimal transport between distributions.

� Choose the ground metric (squared euclidean in our experiments).

� Using regularization allows

� Large scale and regular OT with entropic regularization [Cuturi, 2013].

� Class labels in the transport with group lasso [Courty et al., 2016].

� Efficient optimization based on Bregman projections [Benamou et al., 2015] and

� Majoration minimization for non-convex group lasso.

� Generalized Conditionnal gradient for general regularization (cvx. lasso,

Laplacian).

15 / 39



OT for domain adaptation : Steps 2 & 3

Dataset 

Class 1

Class 2

Samples 

Samples 

Classifier on 
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Step 2 : Transport the training samples onto the target distribution.

� The mass of each source sample is spread onto the target samples (line of γ0).

� Transport using barycentric mapping [Ferradans et al., 2014].

� The mapping can be estimated for out of sample prediction

[Perrot et al., 2016, Seguy et al., 2017].

Step 3 : Learn a classifier on the transported training samples

� Transported sample keep their labels.

� Classic ML problem when samples are well transported.
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Visual adaptation datasets

Datasets

� Digit recognition, MNIST VS USPS (10 classes, d=256, 2 dom.).

� Face recognition, PIE Dataset (68 classes, d=1024, 4 dom.).

� Object recognition, Caltech-Office dataset (10 classes, d=800/4096, 4 dom.).

Numerical experiments

� State of the art performances on the 3 datasets.

� Works well on deep features adaptation and extension to semi-supervised DA.
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OTDA for biomedical data (1)

Multi-subject P300 classification [Gayraud et al., 2017]

� Objective : reduce calibration for BCI users.

� P300 signal is different accross subjects so adapting models is hard.

� Perform XDAWN [Rivet et al., 2009] as pre-processing.

� Use OTDA to adapt each subject in the dataset to a new subject.

� Train independent classifier on transported data and perform aggregation.
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OTDA for biomedical data (2)

EEG sleep stage classification [Chambon et al., 2018]

� Use pre-trained neural network.

� Adapt with OTDA on the penultimate layer.

� OTDA best DA approach to adapt between EEG

recordings.

Prostace cancer classification [Gautheron et al., 2017]

� Adaptation of MRI voxel features

from 1.5T to 3T.

� Achieve good performance accross

subjects and modality with no target

labels.
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Heterogeneous Domain Adaptation with GW

Semi-supervised Heterogeneous Domain Adaptation [Yan et al., 2018]

� OT for DA initially proposed by [Courty et al., 2016].

� Use the OT matrix to transfer labels or samples between datasets.

� GW find correspondences across spaces but very noisy.

� Semi-supervised strategy allows very good performances.

� Alternative : Co-optimal transport that find correspondances between the

variables and samples simultaneously [Redko et al., 2020].
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Learning from histograms

Data as histograms

� Fixed bin positions xi e.g. grid, simplex ∆ =
{
(µi)i ≥ 0;

∑
i µi = 1

}
� A lot of datasets comes under the form of histograms.

� Images are photo counts (black and white), text as word counts.

� Natural divergence is Kullback–Leibler.

� Not all data can be seen as histograms (positivity+constant mass)!
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Dictionary learning on histograms

DL with Wasserstein distance [Sandler and Lindenbaum, 2011]

min
D,H

∑
i

WC(vi,Dhi)

� NMF: columns of D and H are on the simplex.

� Metric C can encode spatial relations between the bins of the histograms.

� Ground metric learning [Zen et al., 2014].

� Fast DL with regularized OT [Rolet et al., 2016].
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Optimal Spectral Transportation (OST)

Harmonic cost C (log)

OT linear spectral unmixing of musical data [Flamary et al., 2016]

min
h∈∆

WC(v,Dh) (2)

� Objective : robustness to harmonic magnitude and small frequency shift

� Encode harmonic structure in the cost matrix (harmonic robustness).

� Can use simple dictionary (diracs on fundamental frequency).

� Very fast solver for sparse and entropic regularization.

Demo : https://github.com/rflamary/OST
23 / 39
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Principal Geodesics Analysis

Geodesic PCA in the Wasserstein space [Bigot et al., 2017]

� Generalization of Principal Component Analysis to the Wassertsein manifold.

� Regularized OT [Seguy and Cuturi, 2015].

� Approximation using Wasserstein embedding [Courty et al., 2017a].
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Multi-label learning with Wasserstein Loss

Learning with a Wasserstein Loss [Frogner et al., 2015]

min
f

N∑
k=1

W 1
1 (f(xi), li)

� Empirical loss minimization with Wasserstein loss.

� Multi-label prediction (labels l seen as histograms, f output softmax).

� Cost between labels can encode semantic similarity between classes.

� Good performances in image tagging.
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Wasserstein Adversarial Regularization

Principle [Fatras et al., 2021]

RC(f,x) = max
∥v∥≤ϵ

WC(f(x+ v), f(x))

� Use (virtual) adversarial examples to promote a better generalization of DNN

(close samples should have close predictions) [Miyato et al., 2018].

� The ground metric C in regularization RC(f,x) encodes pairwise class relations

and will promote smooth/complex between them.

� State of the art performance for learning with label noise when using semantic

relations between the classes for C (word2vec). 26 / 39
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Empirical distributions A.K.A datasets

µ =

n∑
i=1

aiδxi , xi ∈ Ω,

n∑
i=1

ai = 1

Empirical distribution

� Two realizations never overlap.

� Training base of all machine learning

approaches.

� How to measure discrepancy?

� Maximum Mean Discrepancy (ℓ2 after

convolution).

� Wasserstein distance.

xi
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OT for modeling cell deelopment

Principle [Schiebinger et al., 2019]

� Developmental trajectories of cells from stem cells to more specialized.

� Cell populations are samples at different times with scRNA-seq.

� Optimal transport can be used to find mapping/correspondances between across

population measurements.

� Unbalanced OT is used to model cellular growth and death rates.
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Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]

min
G

max
D

Ex∼µd [logD(x)] + Ez∼N (0,I)[log(1−D(G(z)))]

� Learn a generative model G that outputs realistic samples from data µd.

� Learn a classifier D to discriminate between the generated and true samples.

� Make those models compete (Nash equilibrium [Zhao et al., 2016]).

� Generator space has semantic meaning [Radford et al., 2015].

� But extremely hard to train (vanishing gradients).
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Wasserstein Generative Adversarial Networks (WGAN)

Wasserstein GAN [Arjovsky et al., 2017]

min
G

W 1
1 (G#µz, µd), (3)

� Minimizes the Wasserstein distance between the data µd and the generated data

G#µz whe µz = N (0, I).

� No vanishing gradients ! Better convergence in practice.

� Wasserstein in the dual (separable w.r.t. the samples).

min
G

sup
ϕ∈Lip1

Ex∼µd [ϕ(x)]− Ez∼µz [ϕ(G(z))]

� ϕ is a neural network that acts as an actor critic 30 / 39



WGAN: the devil in the approximation

Neural network belonging to Lip1 ?

� Not really! [Arjovsky et al., 2017] proposes to do weight clipping that force an

upper bound on the Lipschitz constant.

� It is actually the supremum over K-Lipschitz functions that is approximated by a

neural network

max
f∈NN class

LWGAN (f,G) ≤ sup
∥ϕ∥L≤K

LWGAN (ϕ,G) = K ·W 1
1 (G(z), µd)

� Actually not equivalent to solve the optimal transport, but gradients are aligned.

Improved WGAN [Gulrajani et al., 2017]

min
G

sup
f∈NN class

Ex∼µd [f(x)]− Ez∼µz [f(G(z))] + λEx∼µd [(||∇f(x)||2 − 1)2]

Relaxation of the constraint (for W1 the gradient of the potential is 1 almost

everywhere).
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Wasserstein GAN loss on Biomedical images

Reconstructing low dose CT images [Yang et al., 2018]

min
G

W 1
1 (G#µl, µf ) + λ1Ex∼µl [∥V GG(xl)− V GG(G(xl))∥2], (4)

� Use Wasserstein to make reconstruction of quarter dose CT images (µl) similar

to high dose (resolution) CT images (µf ).

� Perceptual loss based on VGG [Simonyan and Zisserman, 2014] embedding to

keep image information.
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Wasserstein Discriminant Analysis (WDA)
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max
P∈S

∑
c,c′>c Wλ(PXc,PXc′)∑

c Wλ(PXc,PXc)
(5)

� Xc are samples from class c.

� P is an orthogonal projection;

� Converges to Fisher Discriminant when λ → ∞.

� Non parametric method that allows nonlinear discrimination.

� Problem solved with gradient ascent in the Stiefel manifold S.

� Gradient computed using automatic differentiation of Sinkhorn algorithm.
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Data imputation with Optimal Transport

Missing Data imputation [Muzellec et al., 2020]

min
Ximp

E[SD(µm(X̂), µm(X̂))]

� X⊙M is the partially observed data with binary mask M.

� X̂ = X⊙M+ (1−M)⊙Ximp is the data imputed by Ximp

� µm(X) is a minibatch of X, expectation is taken w.r.t. the minibatches.

� Out of sample imputation with model [Muzellec et al., 2020, Algo 2 & 3]

� Optimizing minibatch Wasserstein is a classical approach [Fatras et al., 2020].
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Domain adaptation with Wasserstein distance

Domain adaptation for deep learning [Shen et al., 2018]

� Modern DA aim at aligning source and target in the deep representation :

DANN [Ganin et al., 2016], MMD [Tzeng et al., 2014], CORAL [Sun and Saenko, 2016].

� Wasserstein distance (WGAN loss [Arjovsky et al., 2017]) used as objective for

the adaptation [Shen et al., 2018].
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Joint Distribution Optimal Transport for DA
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f
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Learning with JDOT [Courty et al., 2017b]

min
f

{
W1(P̂s, P̂t

f
) = inf

γ∈Π

∑
ij

D(xs
i , y

s
i ;x

t
j , f(x

t
j))γij

}
(6)

� P̂t
f
= 1

Nt

∑Nt
i=1 δxt

i,fx
t
i
is the proxy joint feature/label distribution.

� D(xs
i , y

s
i ;x

t
j , f(x

t
j)) = α∥xs

i − xt
j∥2 + L(ys

i , f(x
t
j)) with α > 0.

� We search for the predictor f that better align the joint distributions.

� OT matrix does the label propagation (no mapping).

� JDOT can be seen as minimizing a generalization bound. 36 / 39



JDOT for large scale deep learning

g

g

+

+

DeepJDOT [Damodaran et al., 2018]

� Learn simultaneously the embedding g and the classifier f .

� JDOT performed in the joint embedding/label space.

� Use minibatch to estimate OT and update g, f at each iterations

[Fatras et al., 2020].

� Scales to large datasets and estimate a representation for both domains.

� TSNE projections of embeddings (MNIST→MNIST-M).
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Three aspects of optimal transport

Transporting with optimal transport

� Learn to map between distributions.

� Estimate a smooth mapping from discrete distributions.

� Applications in domain adaptation.

Divergence between histograms/empirical distributions

� Use the ground metric to encode complex relations

between the bins of histograms for data fitting.

� OT losses are non-parametric divergences between non

overlapping distributions.

� Used to train minimal Wasserstein estimators.

Divergence between structured objects and spaces

� Modeling of structured data and graphs as distribution.

� OT losses (Wass. or (F)GW) measure similarity

between distributions/objects.

� OT find correspondance across spaces for adaptation.
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Thank you

Python code available on GitHub:

https://github.com/PythonOT/POT

� OT LP solver, Sinkhorn (stabilized, ϵ−scaling, GPU)

� Domain adaptation with OT.

� Barycenters, Wasserstein unmixing.

� Gromov Wasserstein.

� Solvers for Numpy/Pytorch/Jax/tensorflow/Cupy

Link for the practical session:

https://github.com/PythonOT/OTML_course_2022
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40 / 39



References ii

[Chambon et al., 2018] Chambon, S., Galtier, M. N., and Gramfort, A. (2018).

Domain adaptation with optimal transport improves eeg sleep stage classifiers.

In 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI), pages

1–4. IEEE.

[Courty et al., 2017a] Courty, N., Flamary, R., and Ducoffe, M. (2017a).

Learning wasserstein embeddings.

[Courty et al., 2017b] Courty, N., Flamary, R., Habrard, A., and Rakotomamonjy, A.

(2017b).

Joint distribution optimal transportation for domain adaptation.

In Neural Information Processing Systems (NIPS).

[Courty et al., 2016] Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A. (2016).

Optimal transport for domain adaptation.

Pattern Analysis and Machine Intelligence, IEEE Transactions on.

41 / 39



References iii

[Cuturi, 2013] Cuturi, M. (2013).

Sinkhorn distances: Lightspeed computation of optimal transportation.

In Neural Information Processing Systems (NIPS), pages 2292–2300.

[Damodaran et al., 2018] Damodaran, B. B., Kellenberger, B., Flamary, R., Tuia, D., and

Courty, N. (2018).

Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation.

[Fatras et al., 2021] Fatras, K., Bhushan Damodaran, B., Lobry, S., Flamary, R., Tuia, D.,

and Courty, N. (2021).

Wasserstein adversarial regularization for learning with label noise.

Pattern Analysis and Machine Intelligence, IEEE Transactions on.

[Fatras et al., 2020] Fatras, K., Zine, Y., Flamary, R., Gribonval, R., and Courty, N. (2020).

Learning with minibatch wasserstein : asymptotic and gradient properties.

In International Conference on Artificial Intelligence and Statistics (AISTAT).

42 / 39



References iv

[Ferradans et al., 2014] Ferradans, S., Papadakis, N., Peyré, G., and Aujol, J.-F. (2014).
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