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Overview of OTML part of the course

Part 1 : Introduction to optimal transport

• Optimal transport problem

• Wasserstein distance and geometry

• Computational aspects and regularized OT

• Optimal Transport extensions

Part 2 : Learning with optimal transport

• Learning to map with OT

• Learning from histograms

• Learning from empirical distributions
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Optimal transport



What is optimal transport ?

The natural geometry of probability measures
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The origins of optimal transport

Problem [Monge, 1781]

• How to move dirt from one place (déblais) to another (remblais) while

minimizing the effort ?

• Find a mapping T between the two distributions of mass (transport).

• Optimize with respect to a displacement cost c(x, y) (optimal).
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Optimal transport (Monge formulation)
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• Probability measures µs and µt on and a cost function c : Ωs × Ωt → R+.

• The Monge formulation [Monge, 1781] aim at finding a mapping T : Ωs → Ωt

inf
T#µs=µt

∫
Ωs

c(x, T (x))µs(x)dx (1)

• Non convex problem because of the constraint T#µs = µt.
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What is T#µs = µt ?

xs

µt(T(xs))µs(x
s)

T(xs)⌦s ⌦t

Pushforward operator T#

• Transfers measures from one space Ωs to another space Ωt

µt(A) = µs(T
−1(A)), ∀ Borel subset A ∈ Ωs

• For smooth measures µs = ρ(x)dx and µt = η(x)dx

T#µs = µt ≡ ρ(T (x))|det(∂T (x))| = η(x)

a.k.a. change of variable formula.

• For a discrete distribution µ =
∑
i aiδxi then T#µ =

∑
i aiδT (xi).

• A solution to the problem might not exist.
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Properties of mapping T

Non-existence / Non-uniqueness

• T#µs = µt is a non-convex constraint.

• Existence of T is not guaranteed.

• Unicity of T is not guaranteed.

• [Brenier, 1991] proved existence and unicity of the Monge map for

c(x, y) = ∥x− y∥2 and distributions with densities (i.e. continuous).

Image from Gabriel Peyré
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Kantorovich relaxation

• Leonid Kantorovich (1912–1986), Economy nobelist in 1975

• Focus on where the mass goes, allow splitting [Kantorovich, 1942].

• Applications mainly for resource allocation problems
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Optimal transport (Kantorovich formulation)

y
x

Joint distribution (x, y) = s(x) t(y)

Source s(x)
Target t(y)
(x, y)

y
x

Transport cost c(x, y) = |x y|2

c(x, y)

• The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic

coupling T ∈ P(Ωs × Ωt) between Ωs and Ωt:

γ0 = argmin
T

∫
Ωs×Ωt

c(x,y)T (x,y)dxdy, (2)

s.t. T ∈ P(µs, µt) =

{
T ≥ 0,

∫
Ωt

T(x,y)dy = µs,

∫
Ωs

T(x,y)dx = µt

}
• T is a joint probability measure with marginals µs and µt.

• Linear Program that always has a solution (µs ⊗ µt ∈ P).
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Optimal transport (Kantorovich dual formulation)

y
x

Joint distribution optimal (x, y)

Source s(x)
Target t(y)
(x, y)

y
x

Transport cost c(x, y) = |x y|2

c(x, y)

Dual formulation of the OT linear program

max
ϕ,ψ

{∫
ϕdµs +

∫
ψdµt

∣∣∣ ϕ(x) + ψ(y) ≤ c(x,y)
}

(3)

• ϕ and ψ are scalar function also known as Kantorovich potentials.

• Equivalent problem by the Rockafellar-Fenchel theorem.

• Objective value separable wrt µs and µt.

• Primal-dual relation : the support of T is where ϕ(x) + ψ(y) = c(x,y)
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Optimal transport (Kantorovich dual formulation)
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Optimal transport (Kantorovich dual formulation)

The linear dual constraint suggest that there exits an optimal ψ for a given ϕ.

c-transform (or c-conjugate)

ϕc(y)
def
= Hc(ϕ) = inf

x
c(x,y)− ϕ(x) (4)

Similar a Legendre transform (equal when c(x,y) = x⊤y).

Semi-dual formulation

max
ϕ

{∫
ϕdµs +

∫
ϕcdµt

}
(5)

• Depends only on one dual potential through the c-transform.

• Nice reformulation when Hc is easy to compute of close form.

• Special case when c(x,y) = ∥x− y∥.
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Case c(x,y) = ∥x− y∥ (a.k.a W 1
1 )

y
x

Joint distribution optimal (x, y)

Source s(x)
Potential (x)
Target t(y)
Potential (x)
(x, y)

y
x

Transport cost c(x, y) = |x y| and dual constraint

Strict equality
c(x, y)

(x) + (y)

Case c(x,y) = ∥x− y∥

• Existence of a solution but not unique.

• For any ϕ ∈ Lip1 (set of 1-Lipschitz functions), we have ϕc(x) = −ϕ(x).

• The dual OT problem can be reformulated as

sup
ϕ∈Lip1

∫
ϕd(µs − µt) = sup

ϕ∈Lip1
E

x∼µs

[ϕ(x)]− E
y∼µt

[ϕ(y)] (6)

• Also known as Kantorovich-Rubinstein duality

• Formulation used for Wasserstein GAN (more details in next part).
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Case c(x,y) = ∥x− y∥2/2 (a.k.a W 2
2 )

y
x

Joint distribution optimal (x, y)

Source s(x)
Potential (x)
Target t(y)
Potential (x)
(x, y)

y
x

Transport cost c(x, y) = |x y|2 and dual constraint

Strict equality
c(x, y)

(x) + (y)

Case c(x,y) = ∥x− y∥2/2

• When µs and µt are continuous, T (x) the OT mapping exists and is unique.

• More remarkably, it is a gradient of a convex functions Φ(x)

T (x) = x−∇ϕ(x) = ∇
(
∥x∥2

2
− ϕ(x)

)
= ∇(Φ(x)) (7)

• This is also known as Brenier’s Theorem [Brenier, 1991].
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Discrete distributions: Empirical vs Histogram

Discrete measure: µ =

n∑
i=1

aiδxi , xi ∈ Ω,
n∑
i=1

ai = 1

Lagrangian (point clouds)

xi

• Constant weight: ai =
1
n

• Quotient space: Ωn, Σn

Eulerian (histograms)

• Fixed positions xi e.g. grid

• Convex polytope Σn (simplex):{
(ai)i ≥ 0;

∑
i ai = 1

}
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Optimal transport with discrete distributions

Distributions
Source s

Target t

Matrix C OT matrix                   

OT Linear Program
When µs =

∑n
i=1 aiδxs

i
and µt =

∑n
i=1 biδxt

i

T0 = argmin
T∈Π(µs,µt)

{
⟨T,C⟩F =

∑
i,j

Ti,jci,j

}

where C is a cost matrix with ci,j = c(xsi ,x
t
j) and the marginals constraints are

Π(µs, µt) =
{
T ∈ (R+)ns×nt |T1nt = a,TT1ns = b

}
Linear program with nsnt variables and ns + nt constraints. Demo
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Optimal transport with discrete distributions

Distributions
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OT Dual for discrete distributions

y
x

Joint distribution optimal (x, y)

Source s(x)
Potential (x)
Target t(y)
Potential (x)
(x, y)

y
x

Transport cost c(x, y) = |x y|2 and dual constraint

Strict equality
c(x, y)

(x) + (y)

Discrete OT dual formulation

max
α∈Rns

,β∈Rnt
αTa+ βTb (8)

s.t. αi + βj ≤ ci,j ∀i, j (9)

• With µs =
∑n
i=1 aiδxs

i
and µt =

∑n
i=1 biδxt

i

• Linear program with ns + nt variables and nsnt constraints.

• Solved with Network Flow solver of complexity O(n3 log(n)) with

n = max(ns, nt).
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Matching words embedding

Word mover’s distance [Kusner et al., 2015]

• Words embedded in a high-dimensional space with neural networks.

• Matching two documents is an OT problem, with the cost being the l2 distance

in the embedded space.

• Small value of the objective means similar documents.

• OT matrix provide interpretability (word correspondance).
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Wasserstein distance

Wasserstein distance

W p
p (µs, µt) = min

T∈P

∫
Ωs×Ωt

∥x− y∥pT (x,y)dxdy = E
(x,y)∼T

[∥x− y∥p] (10)

In this case we have c(x,y) = ∥x− y∥p

• A.K.A. Earth Mover’s Distance (W 1
1 ) [Rubner et al., 2000].

• Do not need the distribution to have overlapping support.

• Works for continuous and discrete distributions (histograms, empirical).
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Wasserstein barycenter

Matrix C

Barycenters [Agueh and Carlier, 2011]

µ̄ = argmin
µ

n∑
i

λiW
p
p (µ

i, µ)

• λi > 0 and
∑n
i λi = 1.

• Uniform barycenter has λi =
1
n
, ∀i.

• Interpolation with n=2 and λ = [1− t, t] with 0 ≤ t ≤ 1 [McCann, 1997].

• Regularized barycenters using Bregman projections [Benamou et al., 2015].

• The cost and regularization impacts the interpolation trajectory.
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Wasserstein space

• The space of probability distribution equipped with the Wasserstein metric

(Pp(X), W 2
2 (X)) defines a geodesic space with a Riemannian

structure [Santambrogio, 2014].

• Geodesics are shortest curves on Pp(X) that link two distributions

Illustration from [Kolouri et al., 2017] and maze example from [Papadakis et al., 2014]
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Wasserstein space

• The space of probability distribution equipped with the Wasserstein metric

(Pp(X), W 2
2 (X)) defines a geodesic space with a Riemannian

structure [Santambrogio, 2014].

• Geodesics are shortest curves on Pp(X) that link two distributions

• Cost between two pixels is the shortest path in the maze (Riemannian metric).

Illustration from [Kolouri et al., 2017] and maze example from [Papadakis et al., 2014]
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3D Wasserstein barycenter

Shape interpolation [Solomon et al., 2015]
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Wasserstein averaging of fMRI

OT averaging of neurological data [Gramfort et al., 2015]

• Average fMRI activation maps on voxels or cortical surface (natural metric).

• Classical average across subjects and gaussian blur loose information.

• OT averaging recover central activation areas with better precision.

• Can encode both geometrical (3D position) or anatomical connectivity

information.

• Extension using OT-Lp seems more robust to noise [Wang et al., 2018].
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Special case: OT in 1D

x y

Source s

Target t

c(x,y) x

y

T(x)

• When c(x, y) is a strictly convex and increasing function of |x− y|.

• If x1 < x2 and y1 < y2, we have c(x1, y1) + c(x2, y2) < c(x1, y2) + c(x2, y1)

• The OT plan respects the ordering of the elements.

• Solution is given by the monotone rearrangement of µ1 onto µ2.

• Simple algorithm for discrete distribution by sorting O(N logN).
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Special case: OT in 1D

Illustration with cumulative distributions

• Fµ cumulative distribution function of µ : Fµ(t) = µ(−∞, t].

• F−1
µ (q), q ∈ [0, 1] is the quantile function: F−1

µ (q) = inf{x ∈ R : Fµ(x) ≥ q}.

• The value of the W1 Wasserstein distance

W1(µs, µt) =

∫ 1

0

c(F−1
µs

(q), F−1
µt

(q))dq

• Very fast O(n log(n)) computation on discrete distributions.
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Sliced Radon Wasserstein

µ1 µ2 Wass. Sliced Wass (20) Sliced Wass (2000)

p-sliced Wasserstein distance (pSW) [Bonneel et al., 2015]

pSW p
p (µs, µt) =

∫
Sd−1

W p
p (R(µs, θ),R(µt, θ))dθ

where R is the Radon transform R(µ, θ) =
∫
Sd−1 µ(x)δ(t− θ⊤x)dx ∀θ ∈ Sd−1

• Can be approximated by discrete sampling of the directions θ.

• Fast 1D wasserstein on 1D projections when d > 1, fast distance estimation and

barycenter computation.

• p-sliced Wasserstein distance used for kernel learning between distributions

[Kolouri et al., 2016].
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Special case: OT between Gaussians (1)

0 5 10

2

0

2

4

6

8

10
Source and target distributions

Source samples
Target samples

0 5 10

2

0

2

4

6

8

10
Empirical means and covariances

Source samples
Target samples
Source mean ms

Target mean mt

0 5 10

2

0

2

4

6

8

10
Linear Monge mapping

Target samples
Mapped source samples

Wasserstein between Gaussian distributions

• µs ∼ N (m1,Σ1) and µt ∼ N (m2,Σ2)

• Wasserstein distance with c(x,y) = ∥x− y∥22 reduces to:

W 2
2 (µs, µt) = ||m1 −m2||22 + B(Σ1,Σ2)

2

where B(, ) is the so-called Bures metric:

B(Σ1,Σ2)
2 = trace(Σ1 +Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2).

In the case where µs ∼ N (m1,Σ1) and µt ∼ N (m2,Σ2) the Wasserstein distance

with c(x,y) = ∥x− y∥22 reduces to:

W 2
2 between Gaussians

W 2
2 (µs, µt) = ||m1 −m2||22 + B(Σ1,Σ2)

2

where B(, ) is the so-called Bures metric:

B(Σ1,Σ2)
2 = trace(Σ1 +Σ2 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2).

The optimal map T is given by

T (x) = m2 +A(x−m1)

with A = Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1
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Special case: OT between Gaussians (2)
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OT mapping between Gaussian distributions

• µs ∼ N (m1,Σ1) and µt ∼ N (m2,Σ2)

• The optimal map T for c(x,y) = ∥x− y∥22 is given by

T (x) = m2 +A(x−m1)

with

A = Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1
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Regularized optimal transport

Tλ
0 = argmin

T∈Π(µs,µt)

⟨T,C⟩F + λΩ(T), (11)

Regularization term Ω(T)

• Entropic regularization [Cuturi, 2013].

• Group Lasso [Courty et al., 2016a].

• KL, Itakura Saito, β-divergences,

[Dessein et al., 2016].

Why regularize?

• Smooth the “distance” estimation:

Wλ(µs, µt) =
〈
Tλ

0 ,C
〉
F

• Encode prior knowledge on the data.

• Better posed problem (convex, stability).

• Fast algorithms to solve the OT problem.
=0

=1
e-

2
=1

e-
1
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Entropic regularized optimal transport

Distributions

Source s

Target t

Reg. OT matrix with =1e-3 Reg. OT matrix with =1e-2

Entropic regularization [Cuturi, 2013]

Tλ
0 = argmin

T∈Π(µs,µt)

⟨T,C⟩F + λ
∑
i,j

Ti,j(log Ti,j − 1)

• Regularization with the negative entropy of T .

• Looses sparsity, gains stability.

• Strictly convex optimization problem.

• Loss and OT matrix are differentiable.
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Solving the entropy regularized problem

Lagrangian of the optimization problem

L(T,α,β) =
∑
ij

TijCij + λTij(log Tij − 1) +αT(T1nt − a) + βT(TT1ns − b)

∂L(T, α, β)/∂Tij = Cij + λ log Tij + αi + βj

∂L(T, α, β)/∂Tij = 0 =⇒ Tij = exp(
αi
λ
) exp(−Cij

λ
) exp(

βj
λ
)

Entropy-regularized transport

The solution of entropy regularized optimal transport problem is of the form

Tλ
0 = diag(u) exp(−C/λ)diag(v)

• Through the Sinkhorn theorem diag(u) and diag(v) exist and are unique.

• Relation with dual variables: ui = exp(αi/λ), vj = exp(βj/λ).

• Can be solved by the Sinkhorn-Knopp algorithm.
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Sinkhorn-Knopp algorithm

Algorithm 1 Sinkhorn-Knopp Algorithm (SK).

Require: a,b,C, λ

u(0) = 1,K = exp(−C/λ)

for i in 1, . . . , nit do

v(i) = b⊘K⊤u(i−1) // Update right scaling

u(i) = a⊘Kv(i) // Update left scaling

end for

return T = diag(u(nit))Kdiag(v(nit))

• The algorithm performs alternatively a scaling along the rows and columns of

K = exp(−C
λ
) to match the desired marginals.

• Complexity O(kn2), where k iterations are required to reach convergence

• Fast implementation in parallel, GPU friendly

• Convolutive/Heat structure for K [Solomon et al., 2015]
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Dual formulation of entropic OT

Primal formulation of entropic OT

min
T∈Π(µs,µt)

⟨T,C⟩F + λ
∑
i,j

Ti,j(log Ti,j − 1)

Dual formulation of entropic OT

max
α,β

αTa+ βTb− 1

λ
exp

(α
λ

)T
K exp

(
β

λ

)
with K = exp

(
−C

λ

)
(12)

• Sinkhorn algorithm is a gradient ascent on the dual variables.

• Dual problem is unconstrained: stochastic gradient descent (SGD)

[Genevay et al., 2016, Seguy et al., 2017] or L-BFGS [Blondel et al., 2017].

• Semi-dual : closed form for β for a fixed α (sumlogexp) leads to fast SAG

algorithm [Genevay et al., 2016].
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Solving entropic OT with Bregman Projections

Kullback Leibler (KL) divergence

KL(T, ρ) =
∑
ij

Tij log
Tij
ρij

=< T, log
T

ρ
>F ,

where T anf ρ are discrete distributions with the same support.

OT as a Bregman projection [Benamou et al., 2015]

T⋆ is the solution of the following Bregman projection

T⋆ = argmin
T∈Π(µs,µt)

KL(T,K), where K = exp

(
−C
λ

)
(13)

• Sinkhorn is an iterative projection scheme, with alternative projections on

marginal constraints.

• Generalizes to Barycenter computation [Benamou et al., 2015].

• Also generalizes to other regularization but less efficient (Dykstra’s Projection

algorithm [Dessein et al., 2016]).
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Sinkhorn divergence

Sinkhorn loss

Wλ(µs, µt) = min
T∈Π(µs,µt)

⟨T,C⟩F + λ
∑
i,j

Ti,j log Ti,j

• Entropic term has smoothing effect.

• Not a divergence (Wλ(µ, µ) > 0 for λ > 0).

OT loss (aka Sharp Sinkhorn [Luise et al., 2018])

OTλ(µs, µt) =
〈
Tλ

0 ,C
〉
F

• Tλ
0 is the solution of entropic OT above.

• Not a divergence (OTλ(µ, µ) > 0 for λ > 0).

Sinkhorn divergence [Genevay et al., 2017]

SDλ(µs, µt) =Wλ(µs, µt)−
1

2
Wλ(µs, µs)−

1

2
Wλ(µt, µt)

• True divergence (SDλ(µ, µ) = 0).

• Better statistical properties as Wasserstein distance [Genevay et al., 2018].
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Regularized OT (general case)

γλ0 = argmin
T∈Π(µs,µt)

⟨T,C⟩F + λΩ(T ),

• Group lasso [Courty et al., 2016b]

Ω(T) =
∑
g

√ ∑
i,j∈Gg

T 2
i,j

Promotes group sparsity (also submodular reg. [Alvarez-Melis et al., 2017])

• Frobenius norm [Blondel et al., 2017]

Ω(T ) =
∑
i,j

T 2
i,j

Strongly convex regularization that keeps some sparsity in the solution.

• [Dessein et al., 2016]: KL, Itakura Saito, β-divergences.

Solved with Alternative optimization techniques when projection is efficient.
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Minimizing the Wasserstein distance

Distributions

Source s

Target t

 Grad. wrt a of  W( s, t)

Gradient wrt a
Target t

 Grad. wrt xs
i  of  W( s, t)

Minimizing the Wasserstein distance

Let µs =
∑n
i=1 aiδxs

i
. We seek the minimal Wasserstein estimator:

min
µs

W (µs, µt)

In practice for a discrete distribution µs there are two ways of doing this:

• Case 1: For a fixed support Xs = {xsi} find the optimal weights a (Eulerian).

• Case 2: For fixed weights a find the optimal support Xs = {xsi} (Lagrangian).
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Case 1: fixed support

Distributions

Source s

Target t

 Grad. update a Grad. wrt a of  W( s, t)

Gradient wrt a
Target t

Gradient with respect to weigths a

W (µs, µt) = max
α∈Rns

,β∈Rnt
,αi+βj≤c(xs

i
,xt

j
)

αTa+ βTb (14)

• W (µs, µt) is convex wrt. a

• Dual solution α∗ is a sub-gradient : α∗ ∈ ∂aW (µs, µt)

• Entropy regularized: W (µs, µt) is smooth, convex and ∇aWλ(µs, µt) = λ logu.

• OT loss: ∇aOTλ(µs, µt) computed using the implicit function theorem

[Luise et al., 2018].
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Case 2: fixed probability masses a

Distributions

Source s

Target t

 Grad. wrt xs
i  of  W( s, t)  Grad. update xs

i

Gradient and update respect to weigths Xs = {xsi} for c(x,y) = ∥x− y∥2

W 2
2 (µs, µt) = min

T∈Π(µs,µt)

∑
i,j

Ti,j∥xsi − xtj∥2 (15)

• Gradient: ∇xs
i
W 2

2 (µs, µt) = 2xsi − 2 1
ai

∑
j Ti,jx

t
j

• W 2
2 (µs, µt) decreases if Xs ← diag(a−1)T∗Xt

• Expression above called barycentric interpolation [Ferradans et al., 2014].
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Source s

Target t
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General case for entropic OT: autodifferentiation

Image from Marco Cuturi

Sinkhorn Autodiff [Genevay et al., 2017]

• Computing gradients through implicit function theorem can be costly

[Luise et al., 2018].

• Each iteration of the SInkhorn algorithm is differentiable.

• Modern neural network toolboxes can perform autodiff (Pytorch, Tensorflow).

• Fast but needs log-stabilization for numerical stability.

• At convergence, closed form solution of the gradients exist (no need to autodiff).
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Outline

Optimal transport

Monge and Kantorovitch

OT on discrete distributions

Wasserstein distances

Barycenters and geometry of optimal transport

Computational aspects of optimal transport

Special cases: OT in 1D and between Gaussian distributions

Regularized optimal transport

Minimizing the Wasserstein distance

Extensions of Optimal Transport

Partial and Unbalanced Optimal Transport

Unbalanced Optimal Transport

Gromov-Wasserstein and transport across spaces
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Extensions of Optimal Transport

Relaxation and extensions

• OT is a powerful formulation for several ML applications.

• But as illustrated by entropic regularization, one can also change the optimization

problem to get a better/more representative problem.

• Several extensions and variants of OT has been studied by mathematicians and

ML practitioners.

Extensions of Optimal Transport

• Partial OT, only a portion of the mass is required to be transported.

• Unbalanced OT, can transport between distributions with different total mass.

• Multi-marginal OT, searches for a transport between more than two

distributions.

• Gromov-Wasserstein OT, searches for a transport across metric spaces.
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Partial Optimal Transport

Partial OT with m= 0.1 Partial OT with m= 0.5 Partial OT with m= 0.8

Partial OT [Caffarelli and McCann, 2010, Figalli, 2010]

min
T∈Πm(µs,µt)

{
⟨T,C⟩F =

∑
i,j

Ti,jci,j

}
where C is a cost matrix with ci,j = c(xsi ,x

t
j) and the marginals constraints are

Πm(µs, µt) =
{
T ∈ (R+)ns×nt |T1nt ≤ a,TT1ns ≤ b,1Tns

T1nt = m
}

• The equality constraint is on the total transported mass that must be equal to m.

• Allows distributions with different total mass when m ≤ min(1Tns
a,1Tnt

b)
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Unbalanced Optimal Transport

L2 UOT with λu = 30 L2 UOT with λu = 50 KL UOT with λu = 1

Unbalanced Optimal transport (UOT) [Benamou, 2003]

min
T≥0

⟨T,C⟩F + λuDφ(T1m,a) + λuDφ(T
⊤1n,b) (16)

• Dφ is a a Bregman divergence penalizing the violation of the marginal constraints.

• Only a portion of the total mass is transported, total mass can be unbalanced

between source and target due to constraint relaxation.

• Closed form exists between Gaussians [Janati et al., 2020, Janati, 2021].

• Can be reformulated and solved like a penalized regression problem

[Chapel et al., 2021]. 43 / 56



Can you transport between different spaces ?

• Ωs : source space, Ωt : target space.

• Both domains/spaces do not share the same variables.

• There is no c(x,y) between the two domains.

• They are related (observe similar objects) but not registered.

• Example: multi-modality with observations on different objects.
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Gromov-Wasserstein divergence

Inspired from Gabriel Peyré

GW for discrete distributions [Memoli, 2011]

GWp(µs, µt) =

(
min

T∈Π(µs,µt)

∑
i,j,k,l

|Di,k −D′
j,l|pTi,j Tk,l

) 1
p

with µs =
∑
i aiδxs

i
and µt =

∑
j bjδxtj and Di,k = ∥xsi − xsk∥, D′

j,l = ∥xtj − xtl∥

• Distance between metric measured spaces : across different spaces.

• Search for an OT plan that preserve the pairwise relationships between samples.

• Invariant to isometry in either spaces (e.g. rotations and translation).
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Entropic Gromov-Wasserstein

Optimization Problem [Peyré et al., 2016]

GWp
p,ϵ(µs, µt) = min

T∈Π(µs,µt)

∑
i,j,k,l

|Di,k −D′
j,l|pTi,j Tk,l + ϵ

∑
i,j

Ti,j log Ti,j (17)

with µs =
∑
i aiδxs

i
and µt =

∑
j bjδxtj and Di,k = ∥xsi − xsk∥, D′

j,l = ∥xtj − xtl∥

• Smoothing the original GW with a convex and smooth entropic term.

Solving the entropic GW [Peyré et al., 2016]

• Problem (17) can be solved using a KL mirror descent.

• This is equivalent to solving at each iteration t

T(t+1) = min
T∈P

〈
T,G(t)

〉
F
+ ϵ

∑
i,j

Ti,j log Ti,j

Where G
(t)
i,j = 2

∑
k,l |Di,k −D

′
j,l|pT

(t)
k,l is the gradient of the GW loss at previous

point T(k).

• Problem above can be solved using a Sinkhorn-Knopp algorithm of entropic OT.

• Very fast approximation exist for low rank distances [Scetbon et al., 2021].
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Gromov-Wasserstein between graphs

Modeling the graph structure with a pairwise matrix D

• An undirected graph G := (V,E) is defined by V = {xi}i∈[N] set of the N nodes

and E = {(xi,xj)|xi ↔ xj} set of edges.

• Structure represented as a symmetric matrix D of relations between the nodes.

• Possible choices : Adjacency matrix (used in this study), Laplacian matrix,

Shortest path matrix.

Graph as a distribution (D,h)
• Graph represented as µX =

∑
i hiδxi .

• The positions xi are implicit and represented

as the pairwise matrix D.

• hi are the masses on the nodes of the graphs

(uniform by default).
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Applications of GW [Solomon et al., 2016]

Shape matching between 3D and 2D surfaces

Multidimensional scaling (MDS) of shape collection
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Labeled graphs as distributions

}
}

}
Graph data representation

µ =
n∑

i=1

hiδ(xiai)

• Nodes are weighted by their mass hi.

• But no common metric between the structure points xi of two different graphs.

• Features values ai can be compared through the common metric
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Fused Gromov-Wasserstein distance

a

b

Fused Gromov Wasserstein distance
µs =

∑n
i=1 hiδxi,ai and µt =

∑m
j=1 gjδyj ,bj

FGWp,q,α(D,D
′, µs, µt) =

(
min

T∈Π(µs,µt)

∑
i,j,k,l

(
(1−α)Cqi,j+α|Di,k−D

′
j,l|q

)p
Ti,j Tk,l

) 1
p

with Di,k = ∥xi − xk∥ and D′
j,l = ∥yi − yl∥ and Ci,j = ∥ai − bj∥

• Parameters q > 1, ∀p ≥ 1.

• α ∈ [0, 1] is a trade off parameter between structure and features. 50 / 56



FGW Properties (1)

FGWp
p,q,α(D,D

′, µs, µt) = min
T∈Π(µs,µt)

∑
i,j,k,l

(
(1− α)Cqi,j + α|Di,k −D′

j,l|q
)p
Ti,j Tk,l

Metric properties [Vayer et al., 2020]

• FGW defines a metric over structured data with measure and features

preserving isometries as invariants.

• FGW is a metric for q = 1 a semi metric for q > 1, ∀p ≥ 1.

• The distance is nul iff :

• There exists a Monge map T#µs = µt.

• Structures are equivalent through this Monge map (isometry).

• Features are equal through this Monge map.

Other properties for continuous distributions

• Interpolation between W (α = 0) and GW (α = 1) distances.

• Geodesic properties (constant speed, unicity).
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FGW barycenter

DD

DD

D

FGW barycenter p = 1, q = 2

• Estimate FGW barycenter using Frechet means (similar to [Peyré et al., 2016]).

• Barycenter optimization solved via block coordinate descent (on T,D, {ai}i).

• Can chose to fix the structure (D) or the features {ai}i in the barycenter.

• aii, and D updates are weighted averages using T .
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FGW barycenter on labeled graphs

Noiseless graph Noisy graphs samples

Barycenter of noisy graphs

• We select a clean graph, change the number of nodes and add label noise and

random connections.

• We compute the barycenter on n = 15 and n = 7 nodes.

• Barycenter graph is obtained through thresholding of the D matrix.
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Noiseless graph BarycenterNoisy graphs samples
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FGW for graphs based clustering
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Training dataset examples 

Centroids
iter

• Clustering of multiple real-valued graphs. Dataset composed of 40 graphs (10

graphs × 4 types of communities)

• k-means clustering using the FGW barycenter
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FGW for community clustering

Graph with communities Approximate Graph Clustering with transport matrix

Graph approximation and comunity clustering

min
D,µ

FGW(D,D0, µ, µ0)

• Approximate the graph (D0, µ0) with a small number of nodes.

• OT matrix give the clustering affectation.

• Works for signals and multiple modes in the clusters.
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FGW for community clustering

Graph with bimodal communities Approximate Graph Clustering with transport matrix

Graph approximation and comunity clustering

min
D,µ

FGW(D,D0, µ, µ0)

• Approximate the graph (D0, µ0) with a small number of nodes.

• OT matrix give the clustering affectation.

• Works for signals and multiple modes in the clusters.
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Summary for Part 1

Optimal transport

• Theoretically grounded ways of comparing probability distributions.

• Non-parametric comparison (between empirical distributions).

• Ground metric encode the geometry of the space (barycenters, geodesic).

• Two aspects: mapping (Monge) vs coupling (Kantorovitch).

• Several variants exists depending on the application.

Optimization

• Solving OT is a linear program.

• Regularization (entropic) leads to faster algorithms.

• Minimization of Wasserstein distance can be done.

• Reference for computational OT : [Peyré et al., 2019]

Next step: how to use it in machine learning applications ?
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(2015).

Iterative Bregman projections for regularized transportation problems.

SISC.

57 / 56



References ii

[Blondel et al., 2017] Blondel, M., Seguy, V., and Rolet, A. (2017).

Smooth and sparse optimal transport.

arXiv preprint arXiv:1710.06276.

[Bonneel et al., 2015] Bonneel, N., Rabin, J., Peyré, G., and Pfister, H. (2015).
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