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Overview of OTML part of the course

Part 1 : Introduction to optimal transport
e Optimal transport problem
e \Wasserstein distance and geometry
e Computational aspects and regularized OT

e Optimal Transport extensions

Part 2 : Learning with optimal transport
e Learning to map with OT
e Learning from histograms

e Learning from empirical distributions
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Optimal transport



The natural geometry of probability measures

A9 &

Monge Kantorovich Koopmans Dantzig ~ Brenier Otto McCann  Villani Figalli

Nobel 75
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The origins of optimal transport

€86° MEmoirEs DE LAcADEMIE ROYALE

MEMOIRE

SUR L A

THEORIE DES DEBRLAIS
ET DES REMBLAIGS

T —rr——
Pr M. M ONGE.

Problem [Monge, 1781]

e How to move dirt from one place (déblais) to another (remblais) while

minimizing the effort ?
e Find a mapping T' between the two distributions of mass (transport).

e Optimize with respect to a displacement cost c¢(z,y) (optimal).
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Optimal transport (Monge formulation)

Distributions Quadratic cost c(x, y) = |x — y|?
— ¢(20,y)
—— c(40,y)
\ — ¢(60,y)
0 20 40 60 80 100 0 20 40 60 80 100

Xy y

e Probability measures 11 and p; on and a cost function ¢ : Qg x Q; — R,

e The Monge formulation [Monge, 1781] aim at finding a mapping 7' : Qs — €

inf /Q e(x, T(x))ps (x)dx (1)

THps=pt

s

e Non convex problem because of the constraint T'# s = pit.
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What is T#

Pushforward operator T#

e Transfers measures from one space (), to another space €2,

pe(A) = ps(T7(A)), V Borel subset A € Q,

e For smooth measures js = p(z)dx and ¢ = n(z)dx
T#e = e = p(T(2))|det(T ()| = ()

a.k.a. change of variable formula.

e For a discrete distribution j1 = Y~ aidx, then T#pu = 3" aidr(x,)- 7/56



Properties of mapping T
1%
s .'f7’” 1/
It I "

Non-existence / Non-uniqueness

o T#us = pt is a non-convex constraint.
e Existence of 1" is not guaranteed.
e Unicity of 7" is not guaranteed.

e [Brenier, 1991] proved existence and unicity of the Monge map for
c¢(x,y) = ||z — y||* and distributions with densities (i.e. continuous).

Image from Gabriel Peyré
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Kantorovich relaxation

e Leonid Kantorovich (1912-1986), Economy nobelist in 1975
e Focus on where the mass goes, allow splitting [Kantorovich, 1942].

e Applications mainly for resource allocation problems
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Optimal transport (Kantorovich formulati

Joint distribution y(x, y) = us(x)ue(y) Transport cost c(x, y) =[x — y|?

—— Source s(X)
— Target u(y)
— vy

e The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic
coupling T' € P(Qs x Q) between Qg and Qy:

Yo = argmin / c(x,y)T(x,y)dxdy, (2)
T Qs X

st 7€ Pl = {T20, [ Teeyay =, [ Touy)ax—p
Q4 Qg

e T is a joint probability measure with marginals s and ;.

e Linear Program that always has a solution (us ® p¢ € P).
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Optimal transport (Kantorovich formulati

Joint distribution optimal y(x, y) Transport cost c(x,y) = |x — y|?
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Optimal transport (Kantorovich dual formulati

Joint distribution optimal y(x, y) Transport cost c(x,y) = |x — y|?

—— Source ps(x)
—— Target uly)
— vlx.y) x — cxy)

Dual formulation of the OT linear program

wax | [odu+ [wan | 609+ 60 < etx) | e

¢ and 1) are scalar function also known as Kantorovich potentials.

Equivalent problem by the Rockafellar-Fenchel theorem.

Objective value separable wrt ps and ;.

Primal-dual relation : the support of T" is where ¢(x) + ¥ (y) = c¢(x,y)
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Optimal transport (Kantorovich dual formulati

Joint distribution optimal y(x, y) Transport cost c(x, y) = |x — y|? and dual constraint

—— Source s(x)
—— Potential ¢(x)
— Target ju(y)

—— Potential ¢(x)
— ylx.y) x — $(x) +uly)

Dual formulation of the OT linear program

s

max { [ o+ [vdu | o060+ v < x| ©

e ¢ and 1 are scalar function also known as Kantorovich potentials.

e Equivalent problem by the Rockafellar-Fenchel theorem.

e Objective value separable wrt ps and .

e Primal-dual relation : the support of T is where ¢(x) + ¥ (y) = ¢(x,y)
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Optimal transport (Kantorovich dual formulation)

The linear dual constraint suggest that there exits an optimal 1 for a given ¢.

c-transform (or c-conjugate)
def

¢°(y) = H(¢) =inf  c(x,y) = 6(x) (4)

Similar a Legendre transform (equal when c(x,y) = x"y).

Semi-dual formulation

mas { [ o+ [ o) ©)

e Depends only on one dual potential through the c-transform.
e Nice reformulation when H€ is easy to compute of close form.

e Special case when c(x,y) = ||x — y||.
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x,y) =[x -yl (a-k.a Wy)

Joint distribution optimal y(x, y) Transport cost c(x, y) = |x — y| and dual constraint

—— Source s(x)
—— Potential ¢(x)
—— Target pu(y) — Strict equality
—— Potential y(x) — cxy)

—_— ylxy) — (x) +yly)

Case c(x,y) =[x -y
e Existence of a solution but not unique.
e For any ¢ € Lip" (set of 1-Lipschitz functions), we have ¢°(z) = —¢(x).

e The dual OT problem can be reformulated as

sup [ dd(u. — i) = sup E [pla)] - B [6(s) ©)

¢€Lip peLipl X Hs Yt

e Also known as Kantorovich-Rubinstein duality

Formulation used for Wasserstein GAN (more details in next part).
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Joint distribution optimal y(x, y)

Transport cost c(x, y) = |x — y|? and dual constraint

—— Source s(x)

—— Potential p(x)

—— Target ply) —— Strict equality
—— Potential ¢(x) — cxy)

— vxy) x

— ¢(x) +uly)
y

Case ¢(x,y) = ||x — y[|*/2

e When p, and p; are continuous, T'(x) the OT mapping exists and is unique.

e More remarkably, it is a gradient of a convex functions ®(z)

T(e) = 2 — Vo(a) = V (@ - qs(x)) — V(3())

e This is also known as Brenier's Theorem [Brenier, 1991].
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Discrete distributions: Empirical vs Histogram

n n
Discrete measure:  u = E aibx;, X; €€, g a; =1
i=1 i=1

Lagrangian (point clouds) Eulerian (histograms)
e %
°
°
soa® m
am 00 x;
& o8
Q
e Constant weight: a; = % e Fixed positions x; e.g. grid
e Quotient space: Q", ¥, e Convex polytope X, (simplex):

{(ai)i > 0;3, ai = 1}
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Optimal transport with discrete distributions

Distributions Matrix C OT matrix y

b |
=

[ Source ps
I Target pe

OT Linear Program
When j1s = 377 | aidxs and pe = 377 bidye

Ty = argmin (T,C)p = ZTi,jCi,j
TEM(ps,pt) ij
where C is a cost matrix with ¢; ; = ¢(x},x}) and the marginals constraints are
(s, pue) = {T e (RT)™*"|T1,, =a, T 1,, = b}

Linear program with nsn: variables and ns + n; constraints. Demo
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http://127.0.0.1:7999/demo-ot

Optimal transport with discrete distributions

OT matrix y

Distributions Matrix C
o, t XS

© Source us = ' m

° oo °
oy L
® Target

‘. ‘K.

OT Linear Program
When j1s = 377 | aidxs and pe = 37 bidye

To = argmin (T,C)p = ZTi,jCi,j
TEM(ps,pt) i,j
where C is a cost matrix with ¢; ; = ¢(x},x}) and the marginals constraints are
(e, pe) = {T € ()™ TL,, = a, T 1, = b}

Linear program with nsn; variables and ns + n; constraints. Demo
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http://127.0.0.1:7999/demo-ot

Optimal transport with discrete distributions

Distributions Matrix C OT matrix with samples

@ Source s
@ Target

OT Linear Program
When ps = 377" | aidxs and py = 377 bidye

Ty = argmin (T,C)p = ZTi,jcm
TEM(ps,mt) i,
where C is a cost matrix with ¢; ; = ¢(x{,x}) and the marginals constraints are
(e, ) = {T € (R)"*™| T1,, =2, T"1,, = b}

Linear program with nsn; variables and ns + n; constraints. Demo
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http://127.0.0.1:7999/demo-ot

OT Dual for discrete distributions

Joint distribution optimal y(x, y) Transport cost c(x, y) = |x — y|? and dual constraint

—— Source s(x)

—— Potential ¢(x)

—— Target pu(y) — Strict equality
—— Potential y(x) — cxy)

— ylx.y) x — $(x) +uly)

Discrete OT dual formulation

max a"a+ 38" (8)
a€eR”® Bern’

st. ai+ 585 <y Vi, g (9)

e With s = Z?:l (li(;x;’ and e = Z?:l b¢5xt
e Linear program with ns + n; variables and nsn; constraints.

e Solved with Network Flow solver of complexity O(n®log(n)) with

n = max(ns, ne).
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Matching words embedding

A

document 1 K , ‘greets’ document 2
Obama Obama ./V. 1 %4 The
L' .
speaks e , ‘speaks’ President
to President greets
the the
media ‘Chicago’ press
in ‘media’ in
Illinois Oﬂ | oe—¢ Chicago
“Illinois’ Press

word2vec embedding

Word mover’s distance [Kusner et al., 2015]
e Words embedded in a high-dimensional space with neural networks.

e Matching two documents is an OT problem, with the cost being the I> distance
in the embedded space.

e Small value of the objective means similar documents.

e OT matrix provide interpretability (word correspondance).
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Wasserstein distance

Source distribution Divergences (scaled)

JE— W%

— sz

— L (TV)

— I, (sq. eucl.)

Target distributions

Wasserstein distance

P — _v|IP _ _|IP
Wy (pss pe) = mmin /ﬂsmt\lx YIFTeoy)axdy = B [llx=yl"T (10)

In this case we have c¢(x,y) = ||x — y|?
e A.K.A. Earth Mover’s Distance (W7) [Rubner et al., 2000].

e Do not need the distribution to have overlapping support.

e Works for continuous and discrete distributions (histograms, empirical). 1956



Wasserstein barycenter

L2 Wasserstein Matrix C

Barycenters [Agueh and Carlier, 2011]

n

i = arg min N WP i,
i = arg mi jg: 5 )

A; >0 and Z?)\L =1.
e Uniform barycenter has \; = £, Vi.

e Interpolation with n=2 and A = [1 —¢,¢] with 0 < ¢ <1 [McCann, 1997].

Regularized barycenters using Bregman projections [Benamou et al., 2015].

e The cost and regularization impacts the interpolation trajectory.
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L2 Wasserstein Matrix C

Barycenters [Agueh and Carlier, 2011]
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e Uniform barycenter has \; = £, Vi.
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Wasserstein space

Geodesic in the 2-Wasserstein space

HEEEE NNNNE

t=0 t=025 t=05 t=075 t=1 t=0 t=025 t=05 t=07 t=1

Geodesic in the Euclidean space

PPty = (1= t)id +tf )y I(z,8) = (1 — )Io(z) + t ()
dp*(z,t) = I"(z,t)dx

e The space of probability distribution equipped with the Wasserstein metric
(Pp(X), W(X)) defines a geodesic space with a Riemannian
structure [Santambrogio, 2014].

e Geodesics are shortest curves on P,(X) that link two distributions

Illustration from [Kolouri et al., 2017] and maze example from [Papadakis et al., 2014]
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2 | -1 |
L = LI
e e e R et
— G

e The space of probability distribution equipped with the Wasserstein metric
(Pp(X), W3(X)) defines a geodesic space with a Riemannian
structure [Santambrogio, 2014].

e Geodesics are shortest curves on P,(X) that link two distributions

e Cost between two pixels is the shortest path in the maze (Riemannian metric).

Illustration from [Kolouri et al., 2017] and maze example from [Papadakis et al., 2014]
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3D Wasserstein barycenter

Shape interpolation [Solomon et al., 2015]
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Wasserstein averaging of fMRI

OT averaging of neurological data [Gramfort et al., 2015]

e Average fMRI activation maps on voxels or cortical surface (natural metric).

Classical average across subjects and gaussian blur loose information.

OT averaging recover central activation areas with better precision.

Can encode both geometrical (3D position) or anatomical connectivity
information.

e Extension using OT-Lp seems more robust to noise [Wang et al., 2018].
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Outline

Computational aspects of optimal transport
Special cases: OT in 1D and between Gaussian distributions
Regularized optimal transport

Minimizing the Wasserstein distance
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Special case: OT in 1D

—— Source ys — T(x)

—— Target y;

— c(xy)
When ¢(z,y) is a strictly convex and increasing function of |z — y|.

If z1 < 2 and y1 < y2, we have c(z1,y1) + c(z2,y2) < c(x1,y2) + c(z2,y1)

The OT plan respects the ordering of the elements.

Solution is given by the monotone rearrangement of 1 onto pos.

Simple algorithm for discrete distribution by sorting O(N log V).
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Special case: OT in 1D

Yo We PO

When c(x,y) is a strictly convex and increasing function of |z — y|.
o If x1 < x2 and y1 < y2, we have c(x1,y1) + c(z2,y2) < c(x1,y2) + c(z2,y1)
e The OT plan respects the ordering of the elements.

e Solution is given by the monotone rearrangement of p1 onto po.

Simple algorithm for discrete distribution by sorting O(N log N).
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Special case: OT in 1D

F, F,
—>

Illustration with cumulative distributions

e F,, cumulative distribution function of u : F,(t) = pu(—o0,t].
e F,'(q), q €[0,1] is the quantile function: F,;"(¢q) = inf{z € R: Fj,(z) > q}.

e The value of the W7 Wasserstein distance
1
Wil ) = [ (P @) B (@)da
0

e Very fast O(nlog(n)) computation on discrete distributions.
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Special case: OT in 1D

AA~ES

Illustration with cumulative distributions

e F,, cumulative distribution function of u : F,(t) = pu(—o0,t].
e F'(q), q €[0,1] is the quantile function: F,;"(¢q) = inf{z € R: Fj,(z) > q}.

e The value of the W7 Wasserstein distance
1
Wil ) = [ (B @) B (@)da
0

e Very fast O(nlog(n)) computation on discrete distributions.
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Sliced Radon Wasserstein

1 Wass. Sliced Wass (20)  Sliced Wass (2000)

A A PAPR
V7 \ ’\/\ VAN

p-sliced Wasserstein distance (pSW) [Bonneel et al., 2015]

PSW (11ss pie) = W (R(ps,0), R(pe, 0))do

§d—1
where R is the Radon transform R(y,0) = [., 1 pu(x)5(t — 0" x)dx V0 € S*
e Can be approximated by discrete sampling of the directions 6.

e Fast 1D wasserstein on 1D projections when d > 1, fast distance estimation and
barycenter computation.

e p-sliced Wasserstein distance used for kernel learning between distributions
[Kolouri et al., 2016].
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Special case: OT between Gaussians (1)

Source and target distributions Empirical means and covariances Linear Monge mapping
104 Source samples x x| 109 Source samples 109X Target samples * X
X Target samples % Target samples +  Mapped source samples &+
81 3 81 <4 Source mean ms 84 g +
><\ > Target mean m;
6 6 % 6
: %
4 4 >< 4
2 ¥ 24 1‘\// 2
++:
o4 . 0 0
-2 3 -2 -2
Xt
0 5 10 0 5 10 0 5 10
Wasserstein between Gaussian distributions
e 1o~ N(mq,31) and py ~ N(ma, Xo)
e Wasserstein distance with c(x,y) = ||x — y||3 reduces to:

W3 (s pue) = |lmy — ma|[3 + B(E1, £2)°
where B(, ) is the so-called Bures metric:

B(%1, 22)2 = trace(X; + X2 — 2(21/22221/2)1/2)‘
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Special case: OT between Gaussians (2)

Source and target distributions Empirical means and covariances Linear Monge mapping
10 10 10
+ Source samples x X Source samples X Target samples x X
X Target samples % Target samples +  Mapped source samples &+
81 «z\\\ 81 <4 Source mean ms 84 +
“ > Target mean m;
6 X 6 6
44 44 4
2 2 2
k]
++:
04 0 0
-2+ -2+ -2+
Xt
0 5 10 0 5 10 0 5 10

OT mapping between Gaussian distributions
e s ~N(mi,%1) and py ~ N (maz, o)

e The optimal map T for ¢(x,y) = ||x — y||3 is given by
T(x) =msz + A(x —my)

with
A= 2171/2(21/22221/2)1/22;1/2
2856



Regularized optimal transport

Ty = argmin  (T,C), +AQ(T),  (11)
TEM (s, ht)

Regularization term Q(T) ,

e Entropic regularization [Cuturi, 2013]. E

e Group Lasso [Courty et al., 2016a].

e KL, ltakura Saito, S-divergences,

[Dessein et al., 2016]. N T

Why regularize? @ i

e Smooth the “distance” estimation: ~

W(ps, ue) = (T3, C) .

e Encode prior knowledge on the data. L -

o Better posed problem (convex, stability). .T—IE

o Fast algorithms to solve the OT problem. =
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Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2

° E XS
.:'." '!o

@® Source s
° ® Target
% o
°3

Entropic regularization [Cuturi, 2013]

Ty = argmin  (T,C), + /\ZTi’j(IOg Tug =1)
TEM (s, pt) 5

Regularization with the negative entropy of 7T'.

e Looses sparsity, gains stability.
e Strictly convex optimization problem.

e Loss and OT matrix are differentiable.
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Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2
° 8 ®
o
g °
® oo fo
@ Source s
° @ Target
% o
®3
[}
° “‘
PR

Entropic regularization [Cuturi, 2013]

Ty = argmin (T,C), + /\ZTm(log T;; — 1)

TE(ps,pt) i
e Regularization with the negative entropy of T'.
e Looses sparsity, gains stability.

e Strictly convex optimization problem.

Loss and OT matrix are differentiable.
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Solving the entropy regularized problem

Lagrangian of the optimization problem

L(T,a,B) = > T;;Ci; + A\Ty;(log Ti; — 1) + ™ (T1,, —a) + BT (T 1,, —b)

ij

OL(T,a, 8)/0T; = Cij+ AlogTij + i + 5
0L(T, e, 3)/0Ti; =0 =— Ty = exp(%) exp(—%) exp(%)

Entropy-regularized transport

The solution of entropy regularized optimal transport problem is of the form

T = diag(u) exp(—C/\)diag(v)

e Through the Sinkhorn theorem diag(u) and diag(v) exist and are unique.
e Relation with dual variables: u; = exp(ai/A), v; = exp(B;/N).

e Can be solved by the Sinkhorn-Knopp algorithm.
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Sinkhorn-Knopp algorithm

Algorithm 1 Sinkhorn-Knopp Algorithm (SK).
Require: a,b,C, \
ul® =1, K = exp(—C/\)
foriin1,...,n; do
v =b o KTul=Y // Update right scaling
u®” =a@Kv // Update left scaling
end for
return T = diag(u™*))Kdiag(v (™))

The algorithm performs alternatively a scaling along the rows and columns of
K = exp(—$) to match the desired marginals.

Complexity O(kn?), where k iterations are required to reach convergence

Fast implementation in parallel, GPU friendly

Convolutive/Heat structure for K [Solomon et al., 2015]
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Dual formulation of entropic OT

Primal formulation of entropic OT
min <T70>F+)\ZTi,j(logTi,j — 1)

TE(ps,pt) i

Dual formulation of entropic OT

T T 71 o T é : _ ,9
12%( aat+pB b )\exp()\) Kexp()\> WIthK—eXp( /\> (12)

e Sinkhorn algorithm is a gradient ascent on the dual variables.

e Dual problem is unconstrained: stochastic gradient descent (SGD)
[Genevay et al., 2016, Seguy et al., 2017] or L-BFGS [Blondel et al., 2017].

e Semi-dual : closed form for 3 for a fixed o (sumlogexp) leads to fast SAG
algorithm [Genevay et al., 2016].
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Solving entropic OT with Bregman Projections

Kullback Leibler (KL) divergence

Tij
Pij

T
KL(T,p) = Y Tilog =2 =< T,log P >F,
ij

where T anf p are discrete distributions with the same support.

OT as a Bregman projection [Benamou et al., 2015]

T* is the solution of the following Bregman projection

T = argmin KL(T,K), where K =exp <—§> (13)

TEM (ps,pt)

e Sinkhorn is an iterative projection scheme, with alternative projections on
marginal constraints.

e Generalizes to Barycenter computation [Benamou et al., 2015].

e Also generalizes to other regularization but less efficient (Dykstra’s Projection
algorithm [Dessein et al., 2016]).
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Sinkhorn divergence

Sinkhorn loss
Wi(ps, pe) = min (T,C)p+A> TijlogT,

TE(ps,pt) oy

e Entropic term has smoothing effect.

e Not a divergence (Wx(u, p) > 0 for A > 0).
OT loss (aka Sharp Sinkhorn [Luise et al., 2018])
OTs(ussp) = (T3,C)

e T} is the solution of entropic OT above.

e Not a divergence (OT\(u, p1) > 0 for A > 0).

Sinkhorn divergence [Genevay et al., 2017]

1 1
SDx (s, ) = Wx(ps, pie) — §Wx(us,us) - §WA(ut,ut)

e True divergence (SDx(u, 1) = 0).

e Better statistical properties as Wasserstein distance [Genevay et al., 2018]. 3556



Regularized OT (general case)

v = argmin  (T,C), + \Q(T),

TEM (s, put)

e Group lasso [Courty et al., 2016b]

T) ::jiz ZE: T2,

IRTT
Promotes group sparsity (also submodular reg. [Alvarez-Melis et al., 2017])

e Frobenius norm [Blondel et al., 2017]
UT) =) T
0,3

Strongly convex regularization that keeps some sparsity in the solution.

e [Dessein et al., 2016]: KL, Itakura Saito, 5-divergences.

Solved with Alternative optimization techniques when projection is efficient.
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Minimizing the Wasserstein distance

Grad. wrt a of W(us, U¢) Grad. wrt x? of W(us, )

Distributions
[
o9 ° o9
° E XS °,° . °,° °
° LYY ° LYY e
(Y b °¢e hd ° ° ° ® ° [] °
° °
@ Source s @ Gradient wrt a
: @ Target u; 0. e Target J
°® 0°,
®3 ® Q
° ° o
° $“ ° 0%,
e © o ©

Minimizing the Wasserstein distance

Let pus = Z;”:l a715x~§- We seek the minimal Wasserstein estimator:

min - W (ps, pue)

Hs

In practice for a discrete distribution s there are two ways of doing this:
e Case 1: For a fixed support X, = {x{} find the optimal weights a (Eulerian).

e Case 2: For fixed weights a find the optimal support X = {x;} (Lagrangian).
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Case 1: fixed support

Distributions Grad. wrt a of W(us, ut) Grad. update a
H ® ° H e
° t XS °%e o LA °
° Seee ° e, ®,°° .:. *.° .:.
° °
@ Source s @ Gradient wrt a
° @ Target u; N e Target ©
0o, © 0% o 00, ©
°3 ® g ®Q
°
° $“ ° o %%O ° o %%b
o ° o © o ®
Gradient with respect to weigths a
T T
W (s, i) = max aa+p8 b (14)

5 t
a€cR"® ,BeRT ,ai+ﬂj§6(xis,x§)

W (s, pit) is convex wrt. a

Dual solution ™ is a sub-gradient : & € 0aW (s, u1t)

Entropy regularized: W (s, 1+) is smooth, convex and VWi (us, pt) = Alog u.

OT loss: V.OTx(ps, pe) computed using the implicit function theorem

[Luise et al.

, 2018].

38/56



Case 2: fixed probability masses

Distributions

Grad. wrt x§ of W(us, t)

Grad. update x7?

°
..
®  o0°

3
'

Source Us
Target ¢

LY

]
S LIS

o %00 °e,
° °

o

S H ®
@ %00 e,
[ ] [ ]
-]
oo %
e T
o ° %O(?b
o Q

Gradient and update respect to weigths X, = {x;} for c(x,y) = ||x — y|*

e Gradient: VX§W22(,uS,m) =2x; — 21 > T; ;%"

W2(1. _ . ZT" s ty2
5 (fbs, pot) peipin willx; — x5

2%

° WZQ(,uS7 ut) decreases if Xg < diag(a_l)T*Xt

e Expression above called barycentric interpolation [Ferradans et al., 2014].

(15)
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Case 2: fixed probability masses

Distributions

Grad. wrt x? of W(us, )

Update x; for fixed y

° H ® ° H [ Y
° t XS LA o °,°
° oo o° 0 o® °
.:'0‘ '0:. ®e o° ®.°° ‘:.
Source Us
° Target ©
00, © get ue J 6 ©
®3 ® g
° o (o)
e “‘. o OOO%O
° o ©

Gradient and update respect to weigths X, = {x;} for c(x,y) = ||x — y|*
Wa (s, i) = i T llx: — x5 15
e Gradient: VX§W22(,uS,m) =2x; — 21 > T; ;%"
° WZQ(,uS7 ut) decreases if Xg < diag(a_l)T*Xt

e Expression above called barycentric interpolation [Ferradans et al., 2014].
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General case for entropic OT: autodifferentiation

uI( K © Mxy)vg

v
x KT

Vi+1

Wi,

I [ [ Up+1

L+ 0+1
Sinkhorn /=1,..., L—-1

Image from Marco Cuturi
Sinkhorn Autodiff [Genevay et al., 2017]

e Computing gradients through implicit function theorem can be costly
[Luise et al., 2018].

Each iteration of the Sinkhorn algorithm is differentiable.

e Modern neural network toolboxes can perform autodiff (Pytorch, Tensorflow).

Fast but needs log-stabilization for numerical stability.

e At convergence, closed form solution of the gradients exist (no need to autodifg)/.
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Extensions of Optimal Transport

Partial and Unbalanced Optimal Transport
Unbalanced Optimal Transport

Gromov-Wasserstein and transport across spaces
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Extensions of Optimal Transport

Relaxation and extensions
e OT is a powerful formulation for several ML applications.

e But as illustrated by entropic regularization, one can also change the optimization
problem to get a better/more representative problem.

e Several extensions and variants of OT has been studied by mathematicians and
ML practitioners.

Extensions of Optimal Transport
e Partial OT, only a portion of the mass is required to be transported.
e Unbalanced OT, can transport between distributions with different total mass.

e Multi-marginal OT, searches for a transport between more than two
distributions.

e Gromov-Wasserstein OT, searches for a transport across metric spaces.
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Partial Optimal Transport

Partial OT with m=0.1 Partial OT with m=0.5 Partial OT with m=0.8
o, & ° $e $o
e % ﬂ *fe

°
% s
° °
° Y ° %
e © o © o ©

Partial OT [Caffarelli and McCann, 2010, Figalli, 2010]
min T,C),. = T 5ci;
TE™ (ps,pt) {< e ; ! ]}
where C is a cost matrix with ¢; ; = ¢(x},x}) and the marginals constraints are
Hm(,u'sz )uf/) = {T € (R+)nlgxnt‘ T]‘"t S a, TTlns S b7 125’1‘17”’ = 777}

e The equality constraint is on the total transported mass that must be equal to m.

e Allows distributions with different total mass when m < min(la a, lftb)
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Unbalanced Optimal Transport

L2 UOT with AY =30

L2 UOT with AY =50

KL UOT withA¥=1

° t X t XY ° )
e °¢ °dfe ...0. °¢e
[J T [
% ;
®oe ®e
Unbalanced Optimal transport (UOT) [Benamou, 2003]
min (T, C), + A\“Dy(T1p,a) + A\“Dy (T 1,,b) (16)

T>0

D, is a a Bregman divergence penalizing the violation of the marginal constraints.

Only a portion of the total mass is transported, total mass can be unbalanced

between source and target due to constraint relaxation.

Closed form exists between Gaussians [Janati et al., 2020, Janati, 2021].

Can be reformulated and solved like a penalized regression problem
[Chapel et al., 2021].
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sport between different spaces ?

e () : source space, {); : target space.

e Both domains/spaces do not share the same variables.

There is no ¢(x,y) between the two domains.

They are related (observe similar objects) but not registered.

e Example: multi-modality with observations on different objects.
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ldx (z,2") — dy (y,y')

Inspired from Gabriel Peyré

GW for discrete distributions [Memoli, 2011]

QNAMMM):( min §:|Dwf—DhVﬂJﬂu>

TEM(ps,
(raotie) 0

1
P

with MHs = ZZ a,5x; and J A Z]» bJ51§ and Di,k = HX; — Xi”vD;,l = HX? — XH|

e Distance between metric measured spaces : across different spaces.
e Search for an OT plan that preserve the pairwise relationships between samples.

e Invariant to isometry in either spaces (e.g. rotations and translation).
45/56



Entropic Gromov-Wasserstein

Optimization Problem [Peyré et al., 2016]
OWE (s, pe) = _min > |Diy — Di[PTy; Tey+ €y TijlogTi;  (17)
TEH(HmHt)ijkl i
with 15 = 37, aidxs and pe = 35, b6, and Dip = |[x7 — xil, D), = [|Ix5 — x{|
: 30" : :

e Smoothing the original GW with a convex and smooth entropic term.

Solving the entropic G\ [Peyré et al., 2016]
e Problem (17) can be solved using a KL mirror descent.

e This is equivalent to solving at each iteration ¢

T = min  (T,G") T, log T,
min ) F“'E; 3 108 L

Where Git; =2 1Dik — D;l\pTlgtl) is the gradient of the GW loss at previous
point T
e Problem above can be solved using a Sinkhorn-Knopp algorithm of entropic OT.

e Very fast approximation exist for low rank distances [Scetbon et al., 2021]. 4656



Gromov-Wasserstein between graphs
E Adjacency

Modeling the graph structure with a pairwise matrix D

X X

XX X X

Shortest path
matrix

|

o

e An undirected graph G := (V, E) is defined by V = {x;};c[n] set of the N nodes
and E = {(xi,xj)|x:i <> x;} set of edges.

e Structure represented as a symmetric matrix D of relations between the nodes.

e Possible choices : Adjacency matrix (used in this study), Laplacian matrix,
Shortest path matrix.

Graph as a distribution (D, h)
e Graph represented as px =), hidz, .

e The positions x; are implicit and represented
as the pairwise matrix D.

o 00 L " e h,; are the masses on the nodes of the graphs
c0@e " ! (uniform by default).
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Applications of GW [Solomon et al., 2016]

Shape matching between 3D and 2D surfaces

Source Targets

Multidimensional scaling (MDS) of shape collection

A
e
RO
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Labeled graphs as distributions

'YX K
eoe eece

X; :';: } HA = Zz hz'(sai

} H= Zz hié(xi,ai)

0-00 ) O ax = bt
e 0@ '

Graph data representation

e Nodes are weighted by their mass h;.
e But no common metric between the structure points x; of two different graphs.

e Features values a; can be compared through the common metric
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Fused Gromov-Wasserstein distance

X

Fused Gromov Wasserstein distance
n m
Hs = Zi:l hibz;,a; and pe = Zj:l gjéyj,b;

=

FGW,p.g.0(D, D', s, 1) = ( min Z ((lfa)C’f,jJrOdDi,ka;,z\q)pTi,j Tk,l)

Tel(ps,
(bsspet) il

with D; = |lzi — 21| and D}, = [lyi — wil| and Cij = [|a; — by ||
e Parameters ¢ > 1, Vp > 1.

e « € [0,1] is a trade off parameter between structure and features. 50 /56



FGW Properties (1)

FOWY oD, D s, ) = min >~ (1= a)C; + a| Dy — D[ ") ' Tij Try

Tel(ps,
(bsspet) il

Metric properties [Vayer et al., 2020]

e FGWV defines a metric over structured data with measure and features
preserving isometries as invariants.

e FGW is a metric for ¢ = 1 a semi metric for ¢ > 1, Vp > 1.
e The distance is nul iff :

e There exists a Monge map T#s = put.
e Structures are equivalent through this Monge map (isometry).
e Features are equal through this Monge map.

Other properties for continuous distributions
e Interpolation between W (o = 0) and GW (« = 1) distances.

e Geodesic properties (constant speed, unicity).
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FGW barycenter

Euclidean barycenter FGW barycenter

Ty

(Da, p2)

I T3 (Dlaﬂl) (D37u3)
min 32y, Mklw — ]| petin, 2 AFGWD:D, i, p)

FGW barycenter p = 1,q =2
e Estimate FGW barycenter using Frechet means (similar to [Peyré et al., 2016]).
e Barycenter optimization solved via block coordinate descent (on T, D, {a;}:).
e Can chose to fix the structure (D) or the features {a;}; in the barycenter.

® a;;, and D updates are weighted averages using 7.
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FGW barycenter on labeled graphs

30N OO
SEONS.EY.

e We select a clean graph, change the number of nodes and add label noise and

Barycenter of noisy graphs

random connections.
e \We compute the barycenter on n = 15 and n = 7 nodes.

e Barycenter graph is obtained through thresholding of the D matrix.
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FGW barycenter on labeled graphs

Noiseless graph Noisy graphs samples Barycenter
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FGW barycenter on labeled graphs

Noiseless graph Noisy graphs samples

Barycenter of noisy graphs

e We select a clean graph, change the number of nodes and add label noise and
random connections.

e \We compute the barycenter on n = 15 and n = 7 nodes.

e Barycenter graph is obtained through thresholding of the D matrix.
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FGW barycenter on labeled graphs
Noiseless graph Noisy graphs samples Barycenter

O E E B P
BE a8 ESs

e We select a clean graph, change the number of nodes and add label noise and

Barycenter of noisy graphs

random connections.
e We compute the barycenter on n = 15 and n = 7 nodes.

e Barycenter graph is obtained through thresholding of the D matrix.
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FGW for graphs based clustering

Centroids

Training dataset examples

cluster 1

cluster 2

cluster 3

cluster 4

e Clustering of multiple real-valued graphs. Dataset composed of 40 graphs (10
graphs x 4 types of communities)

e k-means clustering using the FFGW barycenter
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FGW for community clustering

Graph with communities Approximate Graph Clustering with transport matrix

Graph approximation and comunity clustering
min - FGW(D, Do, i, ho)

S
e Approximate the graph (Do, 110) with a small number of nodes.
e OT matrix give the clustering affectation.

e Works for signals and multiple modes in the clusters.
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FGW for community clustering

Graph with bimodal communities Approximate Graph Clustering with transport matrix

Graph approximation and comunity clustering
min - FGW(D, Do, i, ho)

S
e Approximate the graph (Do, 110) with a small number of nodes.
e OT matrix give the clustering affectation.

e Works for signals and multiple modes in the clusters.

55 /56



Summary for Part 1

Optimal transport
e Theoretically grounded ways of comparing probability distributions.
e Non-parametric comparison (between empirical distributions).
e Ground metric encode the geometry of the space (barycenters, geodesic).
e Two aspects: mapping (Monge) vs coupling (Kantorovitch).

e Several variants exists depending on the application.

Optimization
e Solving OT is a linear program.
e Regularization (entropic) leads to faster algorithms.
e Minimization of Wasserstein distance can be done.

e Reference for computational OT : [Peyré et al., 2019]
Next step: how to use it in machine learning applications ?
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