
Optimal transport for machine learning

Introduction to optimal transport
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Overview of the tutorial

Part 1 : Introduction to optimal transport (≈1:30)

• Optimal transport problem

• Wasserstein distance and geometry

• Computational aspects and regularized OT

Part 2 : Learning with optimal transport (≈1:30)

• Learning to map with OT

• Learning from histograms

• Learning from empirical distributions
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Optimal transport



What is optimal transport ?

The natural geometry of probability measures
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The origins of optimal transport

Problem [Monge, 1781]

• How to move dirt from one place (déblais) to another (remblais) while

minimizing the effort ?

• Find a mapping T between the two distributions of mass (transport).

• Optimize with respect to a displacement cost c(x, y) (optimal).
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Optimal transport (Monge formulation)
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c(20, y)
c(40, y)
c(60, y)

• Probability measures µs and µt on and a cost function c : Ωs × Ωt → R+.

• The Monge formulation [Monge, 1781] aim at finding a mapping T : Ωs → Ωt

inf
T#µs=µt

∫
Ωs

c(x, T (x))µs(x)dx (1)

• Non convex problem because of the constraint T#µs = µt.
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What is T#µs = µt ?

xs

µt(T(xs))µs(x
s)

T(xs)⌦s ⌦t

Pushforward operator T#

• Transfers measures from one space Ωs to another space Ωt

µt(A) = µs(T
−1(A)), ∀ Borel subset A ∈ Ωs

• For smooth measures µs = ρ(x)dx and µt = η(x)dx

T#µs = µt ≡ ρ(T (x))|det(∂T (x))| = η(x)

a.k.a. change of variable formula
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Properties of mapping T

Non-existence / Non-uniqueness

• T#µs = µt is a non-convex constraint.

• Existence of T is not guaranteed.

• Unicity of T is not guaranteed.

• [Brenier, 1991] proved existence and unicity of the Monge map for

c(x, y) = ‖x− y‖2 and distributions with densities (i.e. continuous).
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Kantorovich relaxation

• Leonid Kantorovich (1912–1986), Economy nobelist in 1975

• Focus on where the mass goes, allow splitting [Kantorovich, 1942].

• Applications mainly for resource allocation problems

9 / 48



Optimal transport (Kantorovich formulation)

y
x

Joint distribution (x, y) = s(x) t(y)

Source s(x)
Target t(y)
(x, y)

y
x

Transport cost c(x, y) = |x y|2

c(x, y)

• The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic

coupling γ ∈ P(Ωs × Ωt) between Ωs and Ωt:

γ0 = argmin
γ

∫
Ωs×Ωt

c(x,y)γ(x,y)dxdy, (2)

s.t. γ ∈ P =

{
γ ≥ 0,

∫
Ωt

γ(x,y)dy = µs,

∫
Ωs

γ(x,y)dx = µt

}
• γ is a joint probability measure with marginals µs and µt.

• Linear Program that always has a solution.
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Couplings for 1D distributions

Image from Gabriel Peyré 11 / 48



Optimal transport (Kantorovich dual formulation)

y
x

Joint distribution optimal (x, y)

Source s(x)
Target t(y)
(x, y)

y
x

Transport cost c(x, y) = |x y|2

c(x, y)

Dual formulation of the OT linear program

max
φ,ψ

{∫
φdµs +

∫
ψdµt

∣∣∣ φ(x) + ψ(y) ≤ c(x,y)

}
(3)

• φ and ψ are scalar function also known as Kantorovich potentials.

• Equivalent problem by the Rockafellar-Fenchel theorem.

• Objective value separable wrt µs and µt.

• Primal-dual relation : the support of γ(x,y) is where φ(x) + ψ(y) = c(x,y)
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Optimal transport (Kantorovich dual formulation)

The linear dual constraint suggest that there exits an optimal ψ for a given φ.

c-transform (or c-conjugate)

φc(y)
def
= Hc(φ) = inf

x
c(x,y)− φ(x) (4)

Similar a Legendre transform (equal when c(x,y) = x>y).

Semi-dual formulation

max
φ

{∫
φdµs +

∫
φcdµt

}
(5)

• Depends only on one dual potential through the c-transform.

• Nice reformulation when Hc is easy to compute of close form.

• Special case when c(x,y) = ‖x− y‖.
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Case c(x,y) = ‖x− y‖ (a.k.a W 1
1 )

y
x

Joint distribution optimal (x, y)

Source s(x)
Potential (x)
Target t(y)
Potential (x)
(x, y)

y
x

Transport cost c(x, y) = |x y| and dual constraint

Strict equality
c(x, y)

(x) + (y)

Case c(x,y) = ‖x− y‖

• Existence of a solution but not unique.

• For any φ ∈ Lip1 (set of 1-Lipschitz functions), we have φc(x) = −φ(x).

• The dual OT problem can be reformulated as

sup
φ∈Lip1

∫
φd(µs − µt) = sup

φ∈Lip1
E

x∼µs

[φ(x)]− E
y∼µt

[φ(y)] (6)

• Also known as Kantorovich-Rubinstein duality

• Formulation used for Wasserstein GAN (more details in next part).
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Case c(x,y) = ‖x− y‖2/2 (a.k.a W 2
2 )

y
x

Joint distribution optimal (x, y)

Source s(x)
Potential (x)
Target t(y)
Potential (x)
(x, y)

y
x

Transport cost c(x, y) = |x y|2 and dual constraint

Strict equality
c(x, y)

(x) + (y)

Case c(x,y) = ‖x− y‖2/2

• When µs and µt are continuous, T (x) the OT mapping exists and is unique.

• More remarkably, it is a gradient of a convex functions Φ(x)

T (x) = x−∇φ(x) = ∇
(
‖x‖2

2
− φ(x)

)
= ∇(Φ(x)) (7)

• This is also known as Brenier’s Theorem [Brenier, 1991].
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Discrete distributions: Empirical vs Histogram

Discrete measure: µ =

n∑
i=1

aiδxi , xi ∈ Ω,
n∑
i=1

ai = 1

Lagrangian (point clouds)

xi

• Constant weight: ai = 1
n

• Quotient space: Ωn, Σn

Eulerian (histograms)

• Fixed positions xi e.g. grid

• Convex polytope Σn (simplex):{
(ai)i ≥ 0;

∑
i ai = 1

}
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Optimal transport with discrete distributions

Distributions
Source s

Target t

Matrix C OT matrix                   

OT Linear Program
When µs =

∑n
i=1 aiδxs

i
and µt =

∑n
i=1 biδxt

i

γ0 = argmin
γ∈P

{
〈γ,C〉F =

∑
i,j

γi,jci,j

}

where C is a cost matrix with ci,j = c(xsi ,x
t
j) and the marginals constraints are

P =
{
γ ∈ (R+)ns×nt | γ1nt = a,γT1ns = b

}
Linear program with nsnt variables and ns + nt constraints. Demo
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Optimal transport with discrete distributions

Distributions
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Optimal transport with discrete distributions

• P is the Birkhoff polytope (for uniform weights).

• No unique solution in some cases, numerical instabilities

• OT loss not differentiable !
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OT Dual for discrete distributions

y
x

Joint distribution optimal (x, y)

Source s(x)
Potential (x)
Target t(y)
Potential (x)
(x, y)

y
x

Transport cost c(x, y) = |x y|2 and dual constraint

Strict equality
c(x, y)

(x) + (y)

Discrete OT dual formulation

max
α∈Rns ,β∈Rnt

αTa + βTb (8)

s.t. αi + βj ≤ ci,j ∀i, j (9)

• With µs =
∑n
i=1 aiδxs

i
and µt =

∑n
i=1 biδxt

i

• Linear program with ns + nt variables and nsnt constraints.

• Solved with Network Flow solver of complexity O(n3 log(n)) with

n = max(ns, nt).
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Matching words embedding

Word mover’s distance [Kusner et al., 2015]

• Words embedded in a high-dimensional space with neural networks.

• Matching two documents is an OT problem, with the cost being the l2 distance

in the embedded space.

• Small value of the objective means similar documents.

• OT matrix provide interpretability (word correspondance).
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Wasserstein distance

Wasserstein distance

W p
p (µs, µt) = min

γ∈P

∫
Ωs×Ωt

‖x− y‖pγ(x,y)dxdy = E
(x,y)∼γ

[‖x− y‖p] (10)

In this case we have c(x,y) = ‖x− y‖p

• A.K.A. Earth Mover’s Distance (W 1
1 ) [Rubner et al., 2000].

• Do not need the distribution to have overlapping support.

• Works for continuous and discrete distributions (histograms, empirical).
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Earth Mover’s Distance (EMD)

EMD for image retrieval [Rubner et al., 2000]

• Represent images as histograms.

• Color histogram measure de color proportion

• Histogram of gradient encode texture.

• FastEMD [Pele and Werman, 2009] is a fast approximation.
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Wasserstein barycenter

Matrix C

Barycenters [Agueh and Carlier, 2011]

µ̄ = arg min
µ

n∑
i

λiW
p
p (µi, µ)

• λi > 0 and
∑n
i λi = 1.

• Uniform barycenter has λi = 1
n
, ∀i.

• Interpolation with n=2 and λ = [1− t, t] with 0 ≤ t ≤ 1 [McCann, 1997].

• Regularized barycenters using Bregman projections [Benamou et al., 2015].

• The cost and regularization impacts the interpolation trajectory.

23 / 48



Wasserstein barycenter

Matrix C

Barycenters [Agueh and Carlier, 2011]

µ̄ = arg min
µ

n∑
i

λiW
p
p (µi, µ)

• λi > 0 and
∑n
i λi = 1.

• Uniform barycenter has λi = 1
n
, ∀i.

• Interpolation with n=2 and λ = [1− t, t] with 0 ≤ t ≤ 1 [McCann, 1997].

• Regularized barycenters using Bregman projections [Benamou et al., 2015].

• The cost and regularization impacts the interpolation trajectory.

23 / 48



Wasserstein space

• The space of probability distribution equipped with the Wasserstein metric

(Pp(X), W 2
2 (X)) defines a geodesic space with a Riemannian

structure [Santambrogio, 2014].

• Geodesics are shortest curves on Pp(X) that link two distributions

Illustration from [Kolouri et al., 2017] and maze example from [Papadakis et al., 2014]
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Wasserstein space

• The space of probability distribution equipped with the Wasserstein metric

(Pp(X), W 2
2 (X)) defines a geodesic space with a Riemannian

structure [Santambrogio, 2014].

• Geodesics are shortest curves on Pp(X) that link two distributions

• Cost between two pixels is the shortest path in the maze (Riemannian metric).

Illustration from [Kolouri et al., 2017] and maze example from [Papadakis et al., 2014]
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3D Wasserstein barycenter

Shape interpolation [Solomon et al., 2015]
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Wasserstein averaging of fMRI

OT averaging of neurological data [Gramfort et al., 2015]

• Average fMRI activation maps on voxels or cortical surface (natural metric).

• Classical average across subjects and gaussian blur loose information.

• OT averaging recover central activation areas with better precision.

• Can encode both geometrical (3D position) or anatomical connectivity

information.

• Extension using OT-Lp seems more robust to noise [Wang et al., 2018].

26 / 48



Outline

Optimal transport

Monge and Kantorovitch

OT on discrete distributions

Wasserstein distances

Barycenters and geometry of optimal transport

Computational aspects of optimal transport

Special cases

Regularized optimal transport

Minimizing the Wasserstein distance

Gromov-Wasserstein

26 / 48



Special case: OT in 1D

x y

Source s

Target t

c(x,y) x

y

T(x)

• When c(x, y) is a strictly convex and increasing function of |x− y|.

• If x1 < x2 and y1 < y2, we have c(x1, y1) + c(x2, y2) < c(x1, y2) + c(x2, y1)

• The OT plan respects the ordering of the elements.

• Solution is given by the monotone rearrangement of µ1 onto µ2.

• Simple algorithm for discrete distribution by sorting O(N logN).
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Special case: OT in 1D

Illustration with cumulative distributions

• Fµ cumulative distribution function of µ : Fµ(t) = µ(−∞, t].

• F−1
µ (q), q ∈ [0, 1] is the quantile function: F−1

µ (q) = inf{x ∈ R : Fµ(x) ≥ q}.

• The value of the W1 Wasserstein distance

W1(µs, µt) =

∫ 1

0

c(F−1
µs

(q), F−1
µt

(q))dq

• Very fast O(n log(n)) computation on discrete distributions.
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Sliced Radon Wasserstein

µ1 µ2 Wass. Sliced Wass (20) Sliced Wass (2000)

p-sliced Wasserstein distance (pSW) [Bonneel et al., 2015]

pSW p
p (µs, µt) =

∫
Sd−1

W p
p (R(µs, θ),R(µt, θ))dθ

where R is the Radon transform R(µ, θ) =
∫
Sd−1 µ(x)δ(t− θ>x)dx ∀θ ∈ Sd−1

• Can be approximated by discrete sampling of the directions θ.

• Fast 1D wasserstein on 1D projections when d > 1, fast distance and bvarycenter

computation.

• p-sliced Wasserstein distance used for kernel learning between distributions

[Kolouri et al., 2016].
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Special case: OT between Gaussians (1)
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Wasserstein between Gaussian distributions

• µs ∼ N (m1,Σ1) and µt ∼ N (m2,Σ2)

• Wasserstein distance with c(x,y) = ‖x− y‖22 reduces to:

W 2
2 (µs, µt) = ||m1 −m2||22 + B(Σ1,Σ2)2

where B(, ) is the so-called Bures metric:

B(Σ1,Σ2)2 = trace(Σ1 + Σ2 − 2(Σ
1/2
1 Σ2Σ

1/2
1 )1/2).

In the case where µs ∼ N (m1,Σ1) and µt ∼ N (m2,Σ2) the Wasserstein distance

with c(x,y) = ‖x− y‖22 reduces to:

W 2
2 between Gaussians

W 2
2 (µs, µt) = ||m1 −m2||22 + B(Σ1,Σ2)2

where B(, ) is the so-called Bures metric:

B(Σ1,Σ2)2 = trace(Σ1 + Σ2 − 2(Σ
1/2
1 Σ2Σ

1/2
1 )1/2).

The optimal map T is given by

T (x) = m2 +A(x−m1)

with A = Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1
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Special case: OT between Gaussians (2)
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OT mapping between Gaussian distributions

• µs ∼ N (m1,Σ1) and µt ∼ N (m2,Σ2)

• The optimal map T for c(x,y) = ‖x− y‖22 is given by

T (x) = m2 +A(x−m1)

with

A = Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1
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Regularized optimal transport

γλ0 = argmin
γ∈P

〈γ,C〉F + λΩ(γ), (11)

Regularization term Ω(γ)

• Entropic regularization [Cuturi, 2013].

• Group Lasso [Courty et al., 2016a].

• KL, Itakura Saito, β-divergences,

[Dessein et al., 2016].

Why regularize?

• Smooth the “distance” estimation:

Wλ(µs, µt) =
〈
γλ0 ,C

〉
F

• Encode prior knowledge on the data.

• Better posed problem (convex, stability).

• Fast algorithms to solve the OT problem.
=0

=1
e-

2
=1

e-
1
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Entropic regularized optimal transport

Distributions

Source s

Target t

Reg. OT matrix with =1e-3 Reg. OT matrix with =1e-2

Entropic regularization [Cuturi, 2013]

γλ0 = argmin
γ∈P

〈γ,C〉F + λ
∑
i,j

γ(i, j)(log γ(i, j)− 1)

• Regularization with the negative entropy of γ.

• Looses sparsity, gains stability.

• Strictly convex optimization problem.

• Loss and OT matrix are differentiable.
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Solving the entropy regularized problem

Lagrangian of the optimization problem

L(γ,α,β) =
∑
ij

γijCij + λγij(log γij − 1) + αT(γ1nt − a) + βT(γT1ns − b)

∂L(γ, α, β)/∂γij = Cij + λ log γij + αi + βj

∂L(γ, α, β)/∂γij = 0 =⇒ γij = exp(
αi
λ

) exp(−Cij

λ
) exp(

βj
λ

)

Entropy-regularized transport

The solution of entropy regularized optimal transport problem is of the form

γλ0 = diag(u) exp(−C/λ)diag(v)

• Through the Sinkhorn theorem diag(u) and diag(v) exist and are unique.

• Relation with dual variables: ui = exp(αi/λ), vj = exp(βj/λ).

• Can be solved by the Sinkhorn-Knopp algorithm.
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Sinkhorn-Knopp algorithm

Algorithm 1 Sinkhorn-Knopp Algorithm (SK).

Require: a,b,C, λ

u(0) = 1,K = exp(−C/λ)
for i in 1, . . . , nit do

v(i) = b�K>u(i−1) // Update right scaling

u(i) = a�Kv(i) // Update left scaling

end for

return T = diag(u(nit))Kdiag(v(nit))

• The algorithm performs alternatively a scaling along the rows and columns of

K = exp(−C
λ

) to match the desired marginals.

• Complexity O(kn2), where k iterations are required to reach convergence

• Fast implementation in parallel, GPU friendly

• Convolutive/Heat structure for K [Solomon et al., 2015]
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Dual formulation of entropic OT

Primal formulation of entropic OT

min
γ∈P

〈γ,C〉F + λ
∑
i,j

γi,j(log γi,j − 1)

Dual formulation of entropic OT

max
α,β

αTa + βTb− 1

λ
exp

(α
λ

)T
K exp

(
β

λ

)
with K = exp

(
−C

λ

)
(12)

• Sinkhorn algorithm is a gradient ascent on the dual variables.

• Dual problem is unconstrained: stochastic gradient descent (SGD)

[Genevay et al., 2016, Seguy et al., 2017] or L-BFGS [Blondel et al., 2017].

• Semi-dual : closed form for β for a fixed α (sumlogexp) leads to fast SAG

algorithm [Genevay et al., 2016].
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Solving entropic OT with Bregman Projections

Kullback Leibler (KL) divergence

KL(γ, ρ) =
∑
ij

γij log
γij
ρij

=< γ, log
γ

ρ
>F ,

where γ anf ρ are discrete distributions with the same support.

OT as a Bregman projection [Benamou et al., 2015]

γ? is the solution of the following Bregman projection

γ? = argmin
γ∈P

KL(γ,K), where K = exp

(
−C
λ

)
(13)

• Sinkhorn is an iterative projection scheme, with alternative projections on

marginal constraints.

• Generalizes to Barycenter computation [Benamou et al., 2015].

• Also generalizes to other regularization but less efficient (Dykstra’s Projection

algorithm [Dessein et al., 2016]).
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Sinkhorn divergence

Sinkhorn loss

Wλ(µs, µt) = min
γ∈P

〈γ,C〉F + λ
∑
i,j

γ(i, j) log γ(i, j)

• Entropic term has smoothing effect.

• Not a divergence (Wλ(µ, µ) > 0 for λ > 0).

OT loss (aka Sharp Sinkhorn [Luise et al., 2018])

OTλ(µs, µt) =
〈
γλ0 ,C

〉
F

• γλ0 is the solution of entropic OT above.

• Not a divergence (OTλ(µ, µ) > 0 for λ > 0).

Sinkhorn divergence [Genevay et al., 2017]

SDλ(µs, µt) = Wλ(µs, µt)−
1

2
Wλ(µs, µs)−

1

2
Wλ(µt, µt)

• True divergence (SDλ(µ, µ) = 0).

• Better statistical properties as Wasserstein distance [Genevay et al., 2018].
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Regularized OT (general case)

γλ0 = argmin
γ∈P

〈γ,C〉F + λΩ(γ),

• Group lasso [Courty et al., 2016b]

Ω(γ) =
∑
g

√ ∑
i,j∈Gg

γ2
i,j

Promotes group sparsity (also submodular reg. [Alvarez-Melis et al., 2017])

• Frobenius norm [Blondel et al., 2017]

Ω(γ) =
∑
i,j

γ2
i,j

Strongly convex regularization that keeps some sparsity in the solution.

• [Dessein et al., 2016]: KL, Itakura Saito, β-divergences.

Solved with Alternative optimization techniques when projection is efficient.
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Minimizing the Wasserstein distance

Distributions

Source s

Target t

 Grad. wrt a of  W( s, t)

Gradient wrt a
Target t

 Grad. wrt xs
i  of  W( s, t)

Minimizing the Wasserstein distance

Let µs =
∑n
i=1 aiδxs

i
. We seek the minimal Wasserstein estimator:

min
µs

W (µs, µt)

In practice for a discrete distribution µs there are two ways of doping this:

• Case 1: For a fixed support Xs = {xsi} find the optimal weights a (Eulerian).

• Case 2: For fixed weights a find the optimal support Xs = {xsi} (Lagrangian).
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Case 1: fixed support

Distributions

Source s

Target t

 Grad. update a Grad. wrt a of  W( s, t)

Gradient wrt a
Target t

Gradient with respect to weigths a

W (µs, µt) = max
α∈Rns

,β∈Rnt
,αi+βj≤c(xs

i
,xt

j
)

αTa + βTb (14)

• W (µs, µt) is convex wrt. a

• Dual solution α∗ is a sub-gradient : α∗ ∈ ∂aW (µs, µt)

• Entropy regularized: W (µs, µt) is smooth, convex and ∇aWλ(µs, µt) = λ logu.

• OT loss: ∇aOTλ(µs, µt) computed using the implicit function theorem

[Luise et al., 2018].
41 / 48



Case 2: fixed probability masses a

Distributions

Source s

Target t

 Grad. wrt xs
i  of  W( s, t)  Grad. update xs

i

Gradient and update respect to weigths Xs = {xsi} for c(x,y) = ‖x− y‖2

W 2
2 (µs, µt) = min

γ∈P

∑
i,j

γi,j‖xsi − xtj‖2 (15)

• Gradient: ∇xs
i
W 2

2 (µs, µt) = 2xsi − 2 1
ai

∑
j γi,jx

t
j

• W 2
2 (µs, µt) decreases if Xs ← diag(a−1)γ∗Xt

• Expression above called barycentric interpolation [Ferradans et al., 2014].
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Case 2: fixed probability masses a

Distributions

Source s

Target t

 Grad. wrt xs
i  of  W( s, t)  Update xs

i  for fixed 

Gradient and update respect to weigths Xs = {xsi} for c(x,y) = ‖x− y‖2

W 2
2 (µs, µt) = min

γ∈P

∑
i,j

γi,j‖xsi − xtj‖2 (15)

• Gradient: ∇xs
i
W 2

2 (µs, µt) = 2xsi − 2 1
ai

∑
j γi,jx

t
j

• W 2
2 (µs, µt) decreases if Xs ← diag(a−1)γ∗Xt

• Expression above called barycentric interpolation [Ferradans et al., 2014].
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General case for entropic OT: autodifferentiation

Image from Marco Cuturi

Sinkhorn Autodiff [Genevay et al., 2017]

• Computing gradients through implicit function theorem can be costly

[Luise et al., 2018].

• Each iteration of the SInkhorn algorithm is differentiable.

• Modern neural network toolboxes can perform autodiff (Pytorch, Tensorflow).

• Fast but needs log-stabilization for numerical stability.
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Outline

Optimal transport

Monge and Kantorovitch

OT on discrete distributions

Wasserstein distances

Barycenters and geometry of optimal transport

Computational aspects of optimal transport

Special cases

Regularized optimal transport

Minimizing the Wasserstein distance

Gromov-Wasserstein
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Can you transport between different spaces ?

• Ωs : source space, Ωt : target space.

• Both domains/spaces do not share the same variables.

• There is no c(x,y) between the two domains.

• They are related (observe similar objects) but not registered.

• Example: multi-modality with observations on different objects.
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Gromov-Wasserstein distance

Inspired from Gabriel Peyré

GW for discrete distributions [Memoli, 2011]

GWp(µs, µt) =

(
min

γ∈Π(µs,µt)

∑
i,j,k,l

|Di,k −D′j,l|pγi,j γk,l
) 1

p

with µs =
∑
i aiδxs

i
and µt =

∑
j bjδxtj and Di,k = ‖xsi − xsk‖, D′j,l = ‖xtj − xtl‖

• Distance over measures with no common ground space.

• Works well on graphs and structured data.

• Invariant to rotations and translation in either spaces.
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Solving the Gromov Wasserstein optimization problem

GWp
p(µs, µt) = min

γ∈Π(µs,µt)

∑
i,j,k,l

|Di,k −D′j,l|pγi,j γk,l

with µs =
∑
i aiδxs

i
and µt =

∑
j bjδxtj and Di,k = ‖xsi − xsk‖, D′j,l = ‖xtj − xtl‖

Optimization problem

• Quadratic Program (Wasserstein is a linear program).

• Nonconvex, NP-hard, related to Quadratic Assignment Problem (QAP).

Optimization algorithm

• Large problem and non convexity forbid standard QP solvers.

• Local solution can be obtained with conditional gradient (each iteration is an OT

problems).

• Using entropy regularization leads to efficient projected gradient (each iteration is

a sinkhorn) [Peyré et al., 2016].
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Applications of GW [Solomon et al., 2016]

Shape matching between 3D and 2D objects

Multidimensional scaling (MDS) of shape collection
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Summary for Part 1

Optimal transport

• Theoretically grounded ways of comparing probability distributions.

• Non-parametric comparison (between empirical distributions)

• Ground metric encode the geometry of the space (barycenters, geodesic).

• Two aspects: mapping vs coupling.

Optimization

• Solving OT is a linear program.

• Regularization (entropic) leads to faster algorithms.

• Minimization of Wasserstein distance can be done .

Next step: how to use it in machine learning ?
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Gramfort, A., Peyré, G., and Cuturi, M. (2015).

Fast optimal transport averaging of neuroimaging data.

In International Conference on Information Processing in Medical Imaging,

pages 261–272. Springer.

Kantorovich, L. (1942).

On the translocation of masses.

C.R. (Doklady) Acad. Sci. URSS (N.S.), 37:199–201.

53 / 48



References vi

Kolouri, S., Park, S. R., Thorpe, M., Slepcev, D., and Rohde, G. K. (2017).

Optimal mass transport: Signal processing and machine-learning

applications.

IEEE signal processing magazine, 34(4):43–59.

Kolouri, S., Zou, Y., and Rohde, G. K. (2016).

Sliced wasserstein kernels for probability distributions.

In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5258–5267.

Kusner, M., Sun, Y., Kolkin, N., and Weinberger, K. (2015).

From word embeddings to document distances.

In International Conference on Machine Learning, pages 957–966.

54 / 48



References vii

Luise, G., Rudi, A., Pontil, M., and Ciliberto, C. (2018).

Differential properties of sinkhorn approximation for learning with

wasserstein distance.

In Advances in Neural Information Processing Systems, pages 5864–5874.

McCann, R. J. (1997).

A convexity principle for interacting gases.

Advances in mathematics, 128(1):153–179.

Memoli, F. (2011).

Gromov wasserstein distances and the metric approach to object

matching.

Foundations of Computational Mathematics, pages 1–71.

55 / 48



References viii

Monge, G. (1781).
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