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Introduction



Supervised learning

Traditional supervised learning

• We want to learn predictor such that

y ≈ f(x).

• Actual P(X,Y ) unknown.

• We have access to training dataset

(xi, yi)i=1,...,n (P̂(X,Y )).

• We choose a loss function L(y, f(x)) that
measure the discrepancy.

Empirical risk minimization
We week for a predictor f minimizing

min
f

{
E

(x,y)∼P̂
L(y, f(x)) =

∑
j

L(yj , f(xj))

}
(1)

• Well known generalization results for predicting on new data.

• Loss is usually L(y, f(x)) = (y − f(x))2 for least square regression and is

L(y, f(x)) = max(0, 1− yf(x))2 for squared Hinge loss SVM.
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Domain Adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Probability Distribution Functions over the domains

Our context

• Classification problem with data coming from different sources (domains).

• Distributions are different but related.
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Unsupervised domain adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problems

• Labels only available in the source domain, and classification is conducted in the

target domain.

• Classifier trained on the source domain data performs badly in the target domain
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Domain adaptation short state of the art

Reweighting schemes [Sugiyama et al., 2008]

• Distribution change between domains.

• Reweigh samples to compensate this change.

Subspace methods

• Data is invariant in a common latent subspace.

• Minimization of a divergence between the

projected domains [Si et al., 2010].

• Use additional label information

[Long et al., 2014].

Gradual alignment

• Alignment along the geodesic between source

and target subspace

[R. Gopalan and Chellappa, 2014].

• Geodesic flow kernel [Gong et al., 2012].
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Optimal transport (Monge formulation)

0 20 40 60 80 100
x,y

Distributions

0 20 40 60 80 100
y

Quadratic cost c(x, y) = |x y|2

c(20, y)
c(40, y)
c(60, y)

• Probability measures µs and µt on and a cost function c : Ωs × Ωt → R+.

• The Monge formulation [Monge, 1781] aim at finding a mapping T : Ωs → Ωt

inf
T#µs=µt

∫
Ωs

c(x, T (x))µs(x)dx (2)

• Non-convex optimization problem, mapping does not exist in the general case.

• [Brenier, 1991] proved existence and unicity of the Monge map for

c(x, y) = ∥x− y∥2 and distributions with densities.
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Optimal transport (Kantorovich formulation)

y
x

Joint distribution (x, y) = s(x) t(y)

Source s(x)
Target t(y)
(x, y)

y
x

Transport cost c(x, y) = |x y|2

c(x, y)

• The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic

coupling γ ∈ P(Ωs × Ωt) between Ωs and Ωt:

γ0 = argmin
γ

∫
Ωs×Ωt

c(x,y)γ(x,y)dxdy, (3)

s.t. γ ∈ P =

{
γ ≥ 0,

∫
Ωt

γ(x,y)dy = µs,

∫
Ωs

γ(x,y)dx = µt

}
• γ is a joint probability measure with marginals µs and µt.

• Linear Program that always have a solution.
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Wasserstein distance

Wasserstein distance

W p
p (µs, µt) = min

γ∈P

∫
Ωs×Ωt

c(x,y)γ(x,y)dxdy = E(x,y)∼γ [c(x,y)] (4)

where c(x,y) = ∥x− y∥p

• A.K.A. Earth Mover’s Distance (W 1
1 ) [Rubner et al., 2000].

• Do not need the distribution to have overlapping support.

• Subgradients can be computed with the dual variables of the LP.

• Works for continuous and discrete distributions (histograms, empirical).
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Optimal transport for domain adaptation



Optimal transport for domain adaptation

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Assumptions

• There exist a transport in the feature space T between the two domains.

• The transport preserves the conditional distributions:

Ps(y|xs) = Pt(y|T(xs)).

3-step strategy [Courty et al., 2016a]

1. Estimate optimal transport between distributions.

2. Transport the training samples with barycentric mapping .

3. Learn a classifier on the transported training samples.

9 / 29



OT for domain adaptation : Step 1

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Step 1 : Estimate optimal transport between distributions.

• Choose the ground metric (squared euclidean in our experiments).

• Using regularization allows

• Large scale and regular OT with entropic regularization [Cuturi, 2013].

• Class labels in the transport with group lasso [Courty et al., 2016a].

• Efficient optimization based on Bregman projections [Benamou et al., 2015] and

• Majoration minimization for non-convex group lasso.

• Generalized Conditionnal gradient for general regularization (cvx. lasso, Laplacian).
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OT for domain adaptation : Steps 2 & 3

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Step 2 : Transport the training samples onto the target distribution.

• The mass of each source sample is spread onto the target samples (line of γ0).

• Transport using barycentric mapping [Ferradans et al., 2014].

• The mapping can be estimated for out of sample prediction

[Perrot et al., 2016, Seguy et al., 2017].

Step 3 : Learn a classifier on the transported training samples
• Transported sample keep their labels.

• Classic ML problem when samples are well transported.
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Visual adaptation datasets

Datasets
• Digit recognition, MNIST VS USPS (10 classes, d=256, 2 dom.).

• Face recognition, PIE Dataset (68 classes, d=1024, 4 dom.).

• Object recognition, Caltech-Office dataset (10 classes, d=800/4096, 4 dom.).

Numerical experiments
• Comparison with state of the art on the 3 datasets.

• OT works very well on digits and object recognition.

• Works well on deep features adaptation and extension to semi-supervised DA.
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Optimal transport for domain adaptation

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Discussion

• Works very well in practice for large class of transformation [Courty et al., 2016a].

• Can use estimated mapping [Perrot et al., 2016, Seguy et al., 2017].

But

• Model transformation only in the feature space.

• Requires the same class proportion between domains [Tuia et al., 2015].

• We estimate a T : Rd → Rd mapping for training a classifier f : Rd → R.
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Joint distribution OT for domain

adaptation (JDOT)



Joint distribution and classifier estimation

Objectives of JDOT

• Model the transformation of labels (allow change of proportion/value).

• Learn an optimal target predictor with no labels on target samples.

• Approach theoretically justified.

Joint distributions and dataset

• We work with the joint feature/label distributions.

• Let Ω ∈ Rd be a compact input measurable space of dimension d and C the set of

labels.

• Let Ps(X,Y ) ∈ P(Ω× C) and Pt(X,Y ) ∈ P(Ω× C) the source and target joint

distribution.

• We have access to an empirical sampling P̂s = 1
Ns

∑Ns
i=1 δxs

i ,y
s
i
of the source

distribution defined by Xs = {xs
i}Ns

i=1 and label information Ys = {ys
i }Ns

i=1.

• but the target domain is defined only by an empirical distribution in the feature

space with samples Xt = {xt
i}Nt

i=1.
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Joint distribution OT (JDOT)

Proxy joint distribution

• Let f be a Ω → C function from a given class of hypothesis H.

• We define the following joint distribution that use f as a proxy of y

Pf
t = (x, f(x))x∼µt (5)

and its empirical counterpart P̂t
f
= 1

Nt

∑Nt
i=1 δxt

i,f(x
t
i)

.

Learning with JDOT
We propose to learn the predictor f that minimize :

min
f

{
W1(P̂s, P̂t

f
) = inf

γ∈∆

∑
ij

D(xs
i ,y

s
i ;x

t
j , f(x

t
j))γij

}
(6)

• ∆ is the transport polytope.

• D(xs
i ,y

s
i ;x

t
j , f(x

t
j)) = α∥xs

i − xt
j∥2 + L(ys

i , f(x
t
j)) with α > 0.

• We search for the predictor f that better align the joint distributions.
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Generalization bound (1)

We provide a theoretical analysis of this choice. After introducing some notions:

Expected loss
The expected loss on a domain D and for a given predictor f is defined as

errD(f)
def
= E

(x,y)∼Pt

L(y, f(x)).

Similarly we define a notion of agreement in D between two hypothesis functions f

and g as errD(f, g) = E(x)∼D L(g(x), f(x)).
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Generalization bound (2)

We define a novel version of the Probabilistic Lipschitzness:

Probabilistic Lipschitzness [Urner et al., 2011, Ben-David et al., 2012]
Let ϕ : R → [0, 1]. A labeling function f : Ω → R is ϕ-Lipschitz with respect to a

distribution P over Ω if for all λ > 0

Prx∼P [∃y : [|f(x)− f(y)| > λd(x, y)]] ≤ ϕ(λ).

Probabilistic Transfer Lipschitzness
Let µs and µt be respectively the source and target distributions. Let ϕ : R → [0, 1]. A

labeling function f : Ω → R and a joint distribution Π(µs, µt) over µs and µt are

ϕ-Lipschitz transferable if for all λ > 0:

Pr(x1,x2)∼Π(µs,µt) [|f(x1)− f(x2)| > λd(x1,x2)] ≤ ϕ(λ).
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Generalization bound (3)

Theorem 1
Let f be any labeling function of ∈ H. Let

Π∗ = argmin
Π∈Π(Ps,Pf

t )

∫
(Ω×C)2

αd(xs,xt) + L(ys, yt)dΠ(xs, ys;xt, yt) and W1(P̂s,
ˆPf
t ) the

associated 1-Wasserstein distance. Let f∗ ∈ H be a Lipschitz labeling function that verifies the

ϕ-probabilistic transfer Lipschitzness (PTL) assumption w.r.t. Π∗ and that minimizes the joint error

errS(f∗) + errT (f∗) w.r.t all PTL functions compatible with Π∗. We assume the input instances are

bounded s.t. |f∗(x1) − f∗(x2)| ≤ M for all x1,x2. Let L be any symmetric loss function, k-Lipschitz

and satisfying the triangle inequality. Consider a sample of Ns labeled source instances drawn from Ps and

Nt unlabeled instances drawn from µt, and then for all λ > 0, with α = kλ, we have with probability at

least 1 − δ that:

errT (f) ≤ W1(P̂s,
ˆPf
t ) +

√
2

c′
log(

2

δ
)

(
1

√
NS

+
1

√
NT

)
+errS(f

∗
) + errT (f

∗
) + kMϕ(λ).

• First term is JDOT objective function.

• Second term is an empirical sampling bound.

• Last terms are usual in DA [Mansour et al., 2009, Ben-David et al., 2010].
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Optimization problem

min
f∈H,γ∈∆

∑
i,j

γi,j

(
αd(xs

i ,x
t
j) + L(ys

i , f(x
t
j))

)
+ λΩ(f) (7)

Optimization procedure

• Ω(f) is a regularization for the predictor f

• We propose to use block coordinate descent (BCD)/Gauss Seidel.

• Provably converges to a stationary point of the problem.

γ update for a fixed f

• Classical OT problem.

• Solved by network simplex.

• Regularized OT can be used

(add a term to problem (7))

f update for a fixed γ

min
f∈H

∑
i,j

γi,jL(y
s
i , f(x

t
j)) + λΩ(f) (8)

• Weighted loss from all source labels.

• γ performs label propagation.
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Regression with JDOT
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Model estimated with JDOT

Source model
Target model
JDOT model

Least square regression with quadratic regularization
For a fixed γ the optimization problem is equivalent to

min
f∈H

∑
j

1

nt
∥ŷj − f(xt

j)∥2 + λ∥f∥2 (9)

• ŷj = nt

∑
j γi,jy

s
i is a weighted average of the source target values.

• Note that this problem is linear instead of quadratic.

• Can use any solver (linear, kernel ridge, neural network).
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Classification with JDOT

0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6
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1.0 Accuracy along BCD iterations

α= 0.1

α= 0.5

α= 1.0

α= 10.0

α= 50.0

α= 100.0

Multiclass classification with Hinge loss
For a fixed γ the optimization problem is equivalent to

min
fk∈H

∑
j,k

P̂j,kL(1, fk(xt
j)) + (1− P̂j,k)L(−1, fk(x

t
j)) + λ

∑
k

∥fk∥2 (10)

• P̂ is the class proportion matrix P̂ = 1
Nt

γ⊤Ps.

• Ps and Ys are defined from the source data with One-vs-All strategy as

Y s
i,k =

{
1 if ysi = k

−1 else
, P s

i,k =

{
1 if ysi = k

0 else

with k ∈ 1, · · · ,K and K being the number of classes.
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Caltech-Office classification dataset

Domains Base SurK SA OT-IT OT-MM JDOT

caltech→amazon 92.07 91.65 90.50 89.98 92.59 91.54

caltech→webcam 76.27 77.97 81.02 80.34 78.98 88.81

caltech→dslr 84.08 82.80 85.99 78.34 76.43 89.81

amazon→caltech 84.77 84.95 85.13 85.93 87.36 85.22

amazon→webcam 79.32 81.36 85.42 74.24 85.08 84.75

amazon→dslr 86.62 87.26 89.17 77.71 79.62 87.90

webcam→caltech 71.77 71.86 75.78 84.06 82.99 82.64

webcam→amazon 79.44 78.18 81.42 89.56 90.50 90.71

webcam→dslr 96.18 95.54 94.90 99.36 99.36 98.09

dslr→caltech 77.03 76.94 81.75 85.57 83.35 84.33

dslr→amazon 83.19 82.15 83.19 90.50 90.50 88.10

dslr→webcam 96.27 92.88 88.47 96.61 96.61 96.61

Mean 83.92 83.63 85.23 86.02 86.95 89.04

Avg. rank 4.50 4.75 3.58 3.00 2.42 2.25

• Classical dataset [Saenko et al., 2010] dedicated to visual adaptation.

• Feature extraction by convolutional neural network [Donahue et al., 2014].

• Comparison with Surrogate Kernel [Zhang et al., 2013], Subspace Alignment

[Fernando et al., 2013] and OT Domain Adaptation [Courty et al., 2016b].

• Parameter selected via reverse cross-validation [Zhong et al., 2010].

• SVM (Hinge loss) classifiers with linear kernel.

• Best ranking method and 2% accuracy gain in average.
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Amazon Review Classification dataset

Domains NN DANN JDOT (mse) JDOT (Hinge)

books→dvd 0.805 0.806 0.794 0.795

books→kitchen 0.768 0.767 0.791 0.794

books→electronics 0.746 0.747 0.778 0.781

dvd→books 0.725 0.747 0.761 0.763

dvd→kitchen 0.760 0.765 0.811 0.821

dvd→electronics 0.732 0.738 0.778 0.788

kitchen→books 0.704 0.718 0.732 0.728

kitchen→dvd 0.723 0.730 0.764 0.765

kitchen→electronics 0.847 0.846 0.844 0.845

electronics→books 0.713 0.718 0.740 0.749

electronics→dvd 0.726 0.726 0.738 0.737

electronics→kitchen 0.855 0.850 0.868 0.872

Mean 0.759 0.763 0.783 0.787

• Dataset aim at predicting reviews across domains [Blitzer et al., 2006].

• Comparison with Domain adversarial neural network [Ganin et al., 2016a].

• Classifier f is a neural network with same architecture as DANN.

• JDOT has better accuracy, classification loss is better than mean square error.
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Wifi localization regression dataset

Domains KRR SurK DIP DIP-CC GeTarS CTC CTC-TIP JDOT

t1 → t2 80.84±1.14 90.36±1.22 87.98±2.33 91.30±3.24 86.76 ± 1.91 89.36±1.78 89.22±1.66 93.03 ± 1.24

t1 → t3 76.44±2.66 94.97±1.29 84.20±4.29 84.32±4.57 90.62±2.25 94.80±0.87 92.60 ± 4.50 90.06 ± 2.01

t2 → t3 67.12±1.28 85.83 ± 1.31 80.58 ± 2.10 81.22 ± 4.31 82.68 ± 3.71 87.92 ± 1.87 89.52 ± 1.14 86.76 ± 1.72

hallway1 60.02 ±2.60 76.36 ± 2.44 77.48 ± 2.68 76.24± 5.14 84.38 ± 1.98 86.98 ± 2.02 86.78 ± 2.31 98.83±0.58

hallway2 49.38 ± 2.30 64.69 ±0.77 78.54 ± 1.66 77.8± 2.70 77.38 ± 2.09 87.74 ± 1.89 87.94 ± 2.07 98.45±0.67

hallway3 48.42 ±1.32 65.73 ± 1.57 75.10± 3.39 73.40± 4.06 80.64 ± 1.76 82.02± 2.34 81.72 ± 2.25 99.27±0.41

• Objective is to predict position of a device on a discretized grid

[Zhang et al., 2013].

• Same experimental protocol as [Zhang et al., 2013, Gong et al., 2016].

• Comparison with domain-invariant projection and its cluster regularized version

([Baktashmotlagh et al., 2013], DIP and DIP-CC), generalized target shift

([Zhang et al., 2015], GeTarS), and conditional transferable components, with its

target information preservation regularization ([Gong et al., 2016], CTC and

CTC-TIP).

• JDOT solves the adaptation problem for transfer across device (10% accuracy

gain on Hallway).
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Large scale JDOT Strategy

Large scale JDOT

• JDOT do not scale well to large datasets/ deep learning.

• Use minibach for computing the transport in the primal [Genevay et al., 2017].

• Evaluate batch-local couplings on (sufficiently large) couples of random (without

replacement) batches in source and target domain

• update f from these couplings

Algorithm : Deep JDOT

input Source data Xs, ys, Targte data Xt

for BCD Iterations do

for each Source/Target minibatch do

Solve OT with JDOT loss

Perform label propagation on minibatch

end for

Update model f on one epoch

end for
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Large scale datasets

Description MNIST→ USPS USPS→MNIST SVHN→MNIST MNIST→ MNIST-M

Source samples 60000 9298 73257 60000

Target samples 9298 60000 60000 60000

height/width 16×16 16×16 32×32×3 28×28×3

• Four cross domain digits datasets: MNIST, USPS, SVHN, MNIST-M .

• We consider a deep convolutional architecture.

• Dropout is used on the dens layers when training.

• Transport distance computed in the raw image space.
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Experimental Results for large scale JDOT

Methods MNIST→ USPS USPS→MNIST SVHN→MNIST MNIST→ MNIST-M

Source only (SO) 86.18 58.73 53.15 59.52

DeepCoral [Sun and Saenko, 2016] 88.43 (22.0) 85.02 (64.6) 69.61 (35.6) 62.18 (0.07)

MMD [Long and Wang, 2015] 89.89 (36.3) 79.19 (50.3) 53.27 (0.01) 52.53 (-19.1)

DANN [Ganin et al., 2016b] 89.06 (28.2) 87.03 (70.0) 73.85∗ (44.7) 76.63 (46.6)

ADDA [Tzeng et al., 2017] 91.22 (49.3) 79.98 (52.2) 76.0∗ (49.4) 79.16 (53.5)

DeepJDOT 91.50 (52.01) 91.21 (79.82) 83.62 (65.85) 67.84 (22.67)

Train on Target (TO) 96.41 99.42 99.42 96.21

• Accuracy in % of the DA methods.

• The values in () represent the coverage gap between SO (source only) and TO

(golden performance if the model is learnt on target labelled data), DA−SO
TO−SO

.

• DeepJDOT is better in 3 out of 4 DA problems.

• Plots represent test performances along the BCD iterations.
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Conclusion



Conclusion

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 

Optimal transport for DA

• Model transformation of the features.

• Conditional distribution preserved.

• Mapping between distributions.

• Learn classifier on the transported

samples.

Joint distribution OT for DA

• Model transformation of the joint

distribution.

• General framework for DA.

• Theoretical justification with

generalization bound.

Next ?

• SGD OT on the semi-dual [Genevay et al., 2016] or dual [Seguy et al., 2017].

• Learn simultaneously the best feature representation [Shen et al., 2017].
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Thank you

Python code available on GitHub:

https://github.com/rflamary/POT

• OT LP solver, Sinkhorn (stabilized, ϵ−scaling, GPU)

• Domain adaptation with OT.

• Barycenters, Wasserstein unmixing.

• Wasserstein Discriminant Analysis.

Python code for JDOT on GitHub:

https://github.com/rflamary/JDOT

Papers available on my website:

https://remi.flamary.com/

Post docs available in:

Nice, Rouen, Rennes (France)
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