

Introduction to (Python) Optimal Transport

Rémi Flamary, École polytechnique

October 10 2023

CentraleSupelec, Gif-sur-Yvette

Distributions are everywhere

Distributions are everywhere in machine learning

- Images, vision, graphics, Time series, text, genes, proteins.
- Many datum and datasets can be seen as distributions.
- Important questions:
 - How to compare distributions?
 - How to use the geometry of distributions?
- Optimal transport provides many tools that can answer those questions.

Illustration from the slides of Gabriel Peyré.

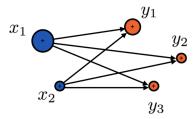
Distributions are everywhere

Distributions are everywhere in machine learning

- Images, vision, graphics, Time series, text, genes, proteins.
- Many datum and datasets can be seen as distributions.
- Important questions:
 - How to compare distributions?
 - How to use the geometry of distributions?
- Optimal transport provides many tools that can answer those questions.

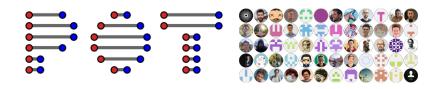
Illustration from the slides of Gabriel Peyré.

Optimal transport



- Problem introduced by Gaspard Monge in his memoire [Monge, 1781].
- ullet How to move mass while minimizing a cost (mass + cost)
- Monge formulation seeks for a mapping between two mass distribution.
- Reformulated by Leonid Kantorovich (1912–1986), Economy nobelist in 1975
- Focus on where the mass goes, allow splitting [Kantorovich, 1942].
- Applications originally for resource allocation problems

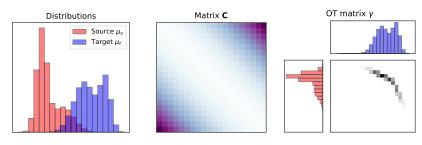
Python Optimal Transport (PO)



The toolbox

- Website/documentation: https://pythonot.github.io/
- Github: https://github.com/PythonOT/POT
- Activity: 65 contributors, 2k stars, 1.2 M PyPI downloads, 600 citations.
- Features: OT solvers from 57 papers, 58 examples in gallery.
- Geek features: 95% test coverage, 100% PEP8 compliant.
- Deep learning features: Pytorch/Tensorflow/Jax support with autodiff.

Optimal transport between discrete distributions



Kantorovitch formulation : OT Linear Program

When $\mu_s = \sum_{i=1}^{n_s} a_i \delta_{\mathbf{x}_i^s}$ and $\mu_t = \sum_{i=1}^{n_t} b_i \delta_{\mathbf{x}_i^t}$

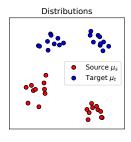
$$W_p^p(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})} \quad \left\{ \langle \boldsymbol{T}, \mathbf{C} \rangle_F = \sum_{i,j} T_{i,j} c_{i,j} \right\}$$

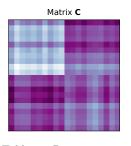
where C is a cost matrix with $c_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_j^t) = \|\mathbf{x}_i^s - \mathbf{x}_j^t\|^p$ and the constraints are

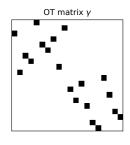
$$\Pi(\mu_s, \mu_t) = \left\{ T \in (\mathbb{R}^+)^{n_s imes n_t} | T \mathbf{1}_{n_t} = \mathbf{a}, T^T \mathbf{1}_{n_s} = \mathbf{b}
ight\}$$

- Solving the OT problem with network simplex is $O(n^3 \log(n))$ for $n = n_s = n_t$.
- $W_p(\mu_s, \mu_t)$ is called the Wasserstein distance (EMD for p=1).

Optimal transport between discrete distributions







Kantorovitch formulation : OT Linear Program

When $\mu_s = \sum_{i=1}^{n_s} a_i \delta_{\mathbf{x}_i^s}$ and $\mu_t = \sum_{i=1}^{n_t} b_i \delta_{\mathbf{x}_i^t}$

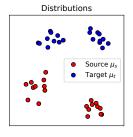
$$W_p^p(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})} \left\{ \langle \boldsymbol{T}, \mathbf{C} \rangle_F = \sum_{i,j} T_{i,j} c_{i,j} \right\}$$

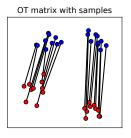
where C is a cost matrix with $c_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_j^t) = \|\mathbf{x}_i^s - \mathbf{x}_j^t\|^p$ and the constraints are

$$\Pi({\color{blue}\mu_s},{\color{blue}\mu_t}) = \left\{ {m{T} \in (\mathbb{R}^+)^{{n_s} imes {n_t}} | \, {m{T}}{m{1}_{n_t}} = {m{a}}, {m{T}}^T{m{1}_{n_s}} = {m{b}}
ight\}$$

- Solving the OT problem with network simplex is $O(n^3 \log(n))$ for $n = n_s = n_t$.
- $W_p(\mu_s, \mu_t)$ is called the Wasserstein distance (EMD for p=1).

Optimal transport between discrete distributions





Kantorovitch formulation: OT Linear Program

When $\mu_s = \sum_{i=1}^{n_s} a_i \delta_{\mathbf{x}_i^s}$ and $\mu_t = \sum_{i=1}^{n_t} b_i \delta_{\mathbf{x}_i^t}$

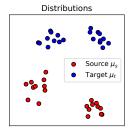
$$W_p^p(\boldsymbol{\mu_s}, \boldsymbol{\mu_t}) = \min_{\boldsymbol{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})} \left\{ \langle \boldsymbol{T}, \boldsymbol{C} \rangle_F = \sum_{i,j} T_{i,j} c_{i,j} \right\}$$

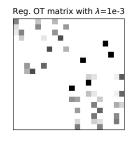
where C is a cost matrix with $c_{i,j} = c(\mathbf{x}_i^s, \mathbf{x}_j^t) = \|\mathbf{x}_i^s - \mathbf{x}_j^t\|^p$ and the constraints are

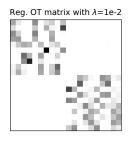
$$\Pi(\pmb{\mu_s}, \pmb{\mu_t}) = \left\{ \pmb{T} \in (\mathbb{R}^+)^{n_s imes n_t} | \, \pmb{T} \pmb{1}_{n_t} = \mathbf{a}, \pmb{T}^T \pmb{1}_{n_s} = \mathbf{b}
ight\}$$

- Solving the OT problem with network simplex is $O(n^3 \log(n))$ for $n = n_s = n_t$.
- $W_p(\mu_s, \mu_t)$ is called the Wasserstein distance (EMD for p=1).

Entropic regularized optimal transport







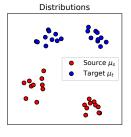
Entropic regularization [Cuturi, 2013]

$$\mathbf{T}_0^{\lambda} = \mathop{\arg\min}_{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})} \quad \langle \mathbf{T}, \mathbf{C} \rangle_F + \lambda \sum_{i,j} T_{i,j} (\log T_{i,j} - 1)$$

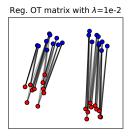
- ullet Regularization with the negative entropy of T.
- Looses sparsity but smooth and strictly convex optimization problem.
- Can be solved efficiently with Sinkhorn's matrix scaling algorithm with $\mathbf{u}^{(0)} = \mathbf{1}, \mathbf{K} = \exp(-\mathbf{C}/\lambda)$ and $\mathbf{T} = \mathsf{diag}(\mathbf{u}^\star)\mathbf{K}\mathsf{diag}(\mathbf{v}^\star)$

$$\mathbf{v}^{(k)} = \mathbf{b} \oslash \mathbf{K}^{\top} \mathbf{u}^{(k-1)}, \quad \mathbf{u}^{(k)} = \mathbf{a} \oslash \mathbf{K} \mathbf{v}^{(k)}$$

Entropic regularized optimal transport



Reg. OT matrix with λ=1e-3



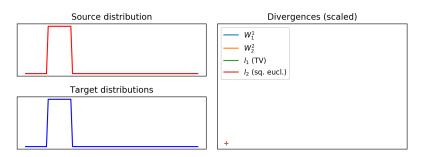
Entropic regularization [Cuturi, 2013]

$$\mathbf{T}_0^{\lambda} = \underset{\mathbf{T} \in \Pi(\boldsymbol{\mu_s}, \boldsymbol{\mu_t})}{\arg \min} \quad \langle \mathbf{T}, \mathbf{C} \rangle_F + \lambda \sum_{i,j} T_{i,j} (\log T_{i,j} - 1)$$

- ullet Regularization with the negative entropy of T.
- Looses sparsity but smooth and strictly convex optimization problem.
- Can be solved efficiently with Sinkhorn's matrix scaling algorithm with $\mathbf{u}^{(0)} = \mathbf{1}, \mathbf{K} = \exp(-\mathbf{C}/\lambda)$ and $\mathbf{T} = \mathsf{diag}(\mathbf{u}^\star)\mathbf{K}\mathsf{diag}(\mathbf{v}^\star)$

$$\mathbf{v}^{(k)} = \mathbf{b} \oslash \mathbf{K}^{\top} \mathbf{u}^{(k-1)}, \quad \mathbf{u}^{(k)} = \mathbf{a} \oslash \mathbf{K} \mathbf{v}^{(k)}$$

Wasserstein distance



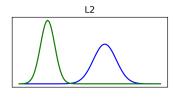
Wasserstein distance

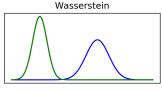
$$W_p^p(\boldsymbol{\mu}_s, \boldsymbol{\mu}_t) = \min_{\gamma \in \mathcal{P}} \quad \int_{\Omega_s \times \Omega_t} \|\mathbf{x} - \mathbf{y}\|^p \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y} = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma}[\|\mathbf{x} - \mathbf{y}\|^p] \quad (1)$$

In this case we have $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|^p$

- A.K.A. Earth Mover's Distance (W_1^1) [Rubner et al., 2000].
- Useful between discrete distribution even without overlapping support.
- Smooth approximation can be computed with Sinkhorn [Cuturi, 2013].
- Wasserstein barycenter: $\overline{\mu} = \arg\min_{\mu} \sum_{i} w_{i} W_{p}^{p}(\mu, \mu_{i})$

Wasserstein distance





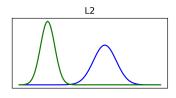
Wasserstein distance

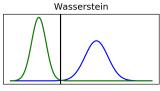
$$W_p^p(\boldsymbol{\mu}_s, \boldsymbol{\mu}_t) = \min_{\gamma \in \mathcal{P}} \quad \int_{\Omega_s \times \Omega_t} \|\mathbf{x} - \mathbf{y}\|^p \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y} = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma}[\|\mathbf{x} - \mathbf{y}\|^p] \quad (1)$$

In this case we have $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|^p$

- A.K.A. Earth Mover's Distance (W₁¹) [Rubner et al., 2000].
- Useful between discrete distribution even without overlapping support.
- Smooth approximation can be computed with Sinkhorn [Cuturi, 2013].
- Wasserstein barycenter: $\overline{\mu} = \arg\min_{\mu} \sum_{i} w_{i} W_{p}^{p}(\mu, \mu_{i})$

Wasserstein distance





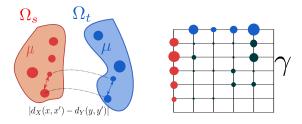
Wasserstein distance

$$W_p^p(\boldsymbol{\mu}_s, \boldsymbol{\mu}_t) = \min_{\gamma \in \mathcal{P}} \quad \int_{\Omega_s \times \Omega_t} \|\mathbf{x} - \mathbf{y}\|^p \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y} = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma}[\|\mathbf{x} - \mathbf{y}\|^p] \quad (1)$$

In this case we have $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|^p$

- A.K.A. Earth Mover's Distance (W₁¹) [Rubner et al., 2000].
- Useful between discrete distribution even without overlapping support.
- Smooth approximation can be computed with Sinkhorn [Cuturi, 2013].
- Wasserstein barycenter: $\overline{\mu} = \arg\min_{\mu} \sum_{i} w_{i} W_{p}^{p}(\mu, \mu_{i})$

Gromov-Wasserstein and extensions



Inspired from Gabriel Peyré

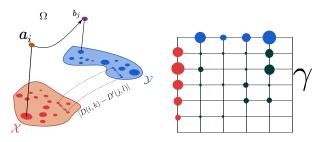
GW for discrete distributions [Memoli, 2011]

$$\mathcal{GW}_p^p(\boldsymbol{\mu_s},\boldsymbol{\mu_t}) = \min_{T \in \Pi(\boldsymbol{\mu_s},\boldsymbol{\mu_t})} \sum_{i,j,k,l} \left| \boldsymbol{D_{i,k}} - \boldsymbol{D'_{j,l}} \right|^p T_{i,j} \, T_{k,l}$$

with
$$\mu_s = \sum_i a_i \delta_{\mathbf{x}_i^s}$$
 and $\mu_t = \sum_j b_j \delta_{x_j^t}$ and $D_{i,k} = \|\mathbf{x}_i^s - \mathbf{x}_k^s\|, D_{j,l}' = \|\mathbf{x}_j^t - \mathbf{x}_l^t\|$

- Distance between metric measured spaces: across different spaces.
- Search for an OT plan that preserve the pairwise relationships between samples.
- Entropy regularized GW proposed in [Peyré et al., 2016].
- Fused GW interpolates between Wass. and GW [Vayer et al., 2018].

Gromov-Wasserstein and extensions



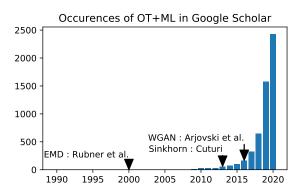
FGW for discrete distributions [Vayer et al., 2018]

$$\mathcal{FGW}_{p}^{p}(\mu_{s}, \mu_{t}) = \min_{T \in \Pi(\mu_{s}, \mu_{t})} \sum_{i, j, k, l} \left((1 - \alpha) C_{i, j}^{q} + \alpha |D_{i, k} - D_{j, l}'|^{q} \right)^{p} T_{i, j} T_{k, l}$$

with
$$\mu_s = \sum_i a_i \delta_{\mathbf{x}_i^s}$$
 and $\mu_t = \sum_j b_j \delta_{x_j^t}$ and $D_{i,k} = \|\mathbf{x}_i^s - \mathbf{x}_k^s\|$, $D'_{j,l} = \|\mathbf{x}_j^t - \mathbf{x}_l^t\|$

- Distance between metric measured spaces : across different spaces.
- Search for an OT plan that preserve the pairwise relationships between samples.
- Entropy regularized GW proposed in [Peyré et al., 2016].
- Fused GW interpolates between Wass. and GW [Vayer et al., 2018].

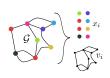
Optimal transport for machine learning



Short history of OT for ML

- Proposed in in image processing by [Rubner et al., 2000] (EMD).
- Entropic regularized OT allows fast approximation [Cuturi, 2013].
- Deep learning/ stochastic optimization [Arjovsky et al., 2017].
- Generative models with diffusion/Schrödinger bridges.

Three aspects of optimal transport



Transporting with optimal transport

- Learn to map between distributions.
- Estimate a smooth mapping from discrete distributions.
- Applications in domain adaptation.

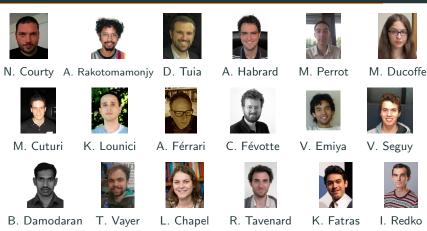
Divergence between histograms/empirical distributions

- Use the ground metric to encode complex relations between the bins of histograms for data fitting.
- OT losses are non-parametric divergences between non overlapping distributions.
- Used to train minimal Wasserstein estimators.

Divergence between structured objects and spaces

- Modeling of structured data and graphs as distribution.
- OT losses (Wass. or (F)GW) measure similarity between distributions/objects.
- OT find correspondance across spaces for adaptation.

Collaborators

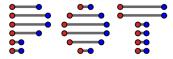


C. Vincent-Cuaz

H. Janati T. Séjourné H. Tran G. Gasso + H. Van Assel, Th. Gnassounou, A. Gramfort

Thank you

Python code available on GitHub:



Python code available on GitHub:

https://github.com/PythonOT/POT

 $\bullet~$ OT LP solver, Sinkhorn (stabilized, $\epsilon-$ scaling, GPU)

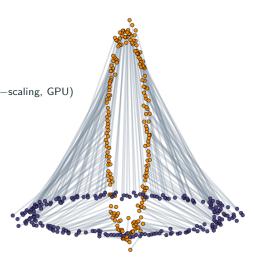
- Domain adaptation with OT.
- Barycenters, Wasserstein unmixing.
- Wasserstein Discriminant Analysis.

Tutorial on OT for ML:

http://tinyurl.com/otml-isbi

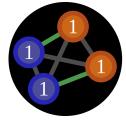
Papers available on my website:

https://remi.flamary.com/

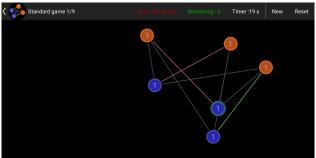


12 / 13

OTGame (OT Puzzle game on android)

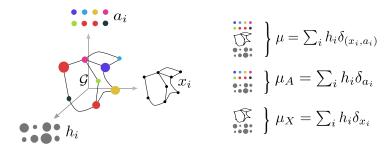


OTGame



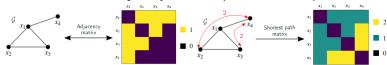
References and supplementary material

Gromov-Wasserstein between graphs



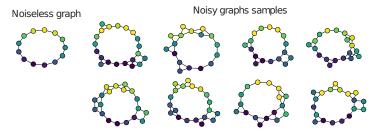
Graph as a distribution (D, F, h)

- The positions x_i are implicit and represented as the pairwise matrix D.
- ullet Possible choices for D: Adjacency matrix, Laplacian, Shortest path, ...

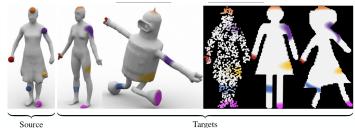


- ullet The node features can be compared between graphs and stored in ${f F}.$
- h_i are the masses on the nodes of the graphs (uniform by default).

Barycenter/averaging of labeled graphs [Vayer et al., 2018]

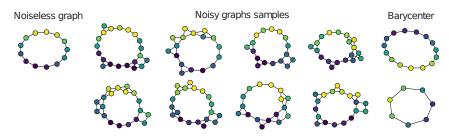


Shape matching between surfaces [Solomon et al., 2016, Thual et al., 2022]

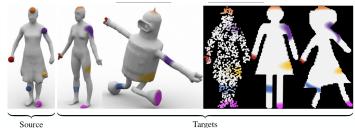


Targets

Barycenter/averaging of labeled graphs [Vayer et al., 2018]

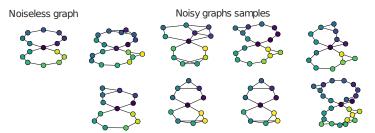


Shape matching between surfaces [Solomon et al., 2016, Thual et al., 2022]

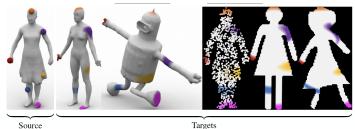


Targets

Barycenter/averaging of labeled graphs [Vayer et al., 2018]



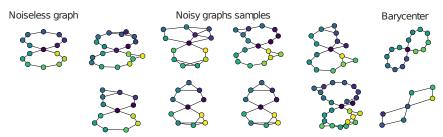
Shape matching between surfaces [Solomon et al., 2016, Thual et al., 2022]



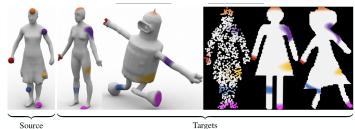
Targets

16 / 13

Barycenter/averaging of labeled graphs [Vayer et al., 2018]

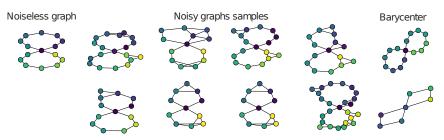


Shape matching between surfaces [Solomon et al., 2016, Thual et al., 2022]

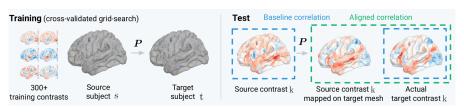


Targets

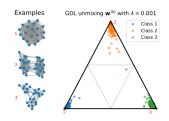
Barycenter/averaging of labeled graphs [Vayer et al., 2018]

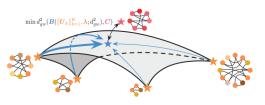


Shape matching between surfaces [Solomon et al., 2016, Thual et al., 2022]



Graph Dictionary Learning





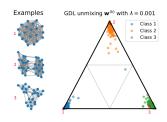
Representation learning for graphs

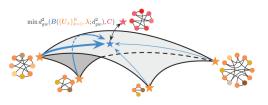
- Learn a dictionary $\{\overline{\mathbf{C}_i}\}_i$ of graph templates to describe a continuous manifold.
- The representation is learned by minimizing the (F)GW distance between the graph reconstruction from the embedding in the dictionary.
- Online Graph Dictionary learning: Linear model [Vincent-Cuaz et al., 2021].

$$\widehat{\mathbf{C}} = \sum_{i} w_i \overline{\mathbf{C}_i}$$

- GW Factorization: Nonlinear (GW barycenter) model [Xu, 2020].
- Dictionary for structured prediction with GW bary. [Brogat-Motte et al., 2022].

Graph Dictionary Learning





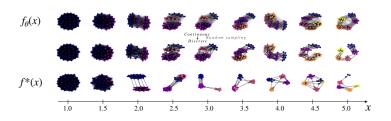
Representation learning for graphs

- Learn a dictionary $\{\overline{\mathbf{C}_i}\}_i$ of graph templates to describe a continuous manifold.
- The representation is learned by minimizing the (F)GW distance between the graph reconstruction from the embedding in the dictionary.
- Online Graph Dictionary learning: Linear model [Vincent-Cuaz et al., 2021].
- GW Factorization : Nonlinear (GW barycenter) model [Xu, 2020].

$$\widehat{\mathbf{C}} = \arg\min_{\mathbf{C}} \sum_{i} w_{i} GW(\mathbf{C}, \overline{\mathbf{C}_{i}})$$

• Dictionary for structured prediction with GW bary. [Brogat-Motte et al., 2022].

Graph Dictionary Learning

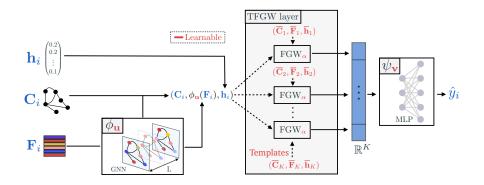


Representation learning for graphs

- ullet Learn a dictionary $\{\overline{\mathbf{C}_i}\}_i$ of graph templates to describe a continuous manifold.
- The representation is learned by minimizing the (F)GW distance between the graph reconstruction from the embedding in the dictionary.
- Online Graph Dictionary learning: Linear model [Vincent-Cuaz et al., 2021].
- GW Factorization: Nonlinear (GW barycenter) model [Xu, 2020].
- Dictionary for structured prediction with GW bary. [Brogat-Motte et al., 2022].

$$f(\mathbf{x}) = \widehat{\mathbf{C}}(\mathbf{x}) = \arg\min_{\mathbf{C}} \sum_{i} w_i(\mathbf{x}) GW(\mathbf{C}, \overline{\mathbf{C}_i})$$

FGW for a pooling layer in GNN



Template based FGW layer (TFGW) [Vincent-Cuaz et al., 2022]

- Principle: represent a graph through its distances to learned templates.
- Learnable parameters are illustrated in red above.
- New end-to-end GNN models for graph-level tasks.
- Sate-of-the-art (still!) on graph classification (1×#1, 3×#2 on paperwithcode).

References i

[Arjovsky et al., 2017] Arjovsky, M., Chintala, S., and Bottou, L. (2017).

Wasserstein generative adversarial networks.

In Proceedings of the 34th International Conference on Machine Learning, volume 70, pages 214–223, Sydney, Australia.

[Brogat-Motte et al., 2022] Brogat-Motte, L., Flamary, R., Brouard, C., Rousu, J., and d'Alché Buc, F. (2022).

Learning to predict graphs with fused gromov-wasserstein barycenters.

In International Conference in Machine Learning (ICML).

[Cuturi, 2013] Cuturi, M. (2013).

Sinkhorn distances: Lightspeed computation of optimal transport.

In NIPS, pages 2292-2300.

[Kantorovich, 1942] Kantorovich, L. (1942).

On the translocation of masses.

C.R. (Doklady) Acad. Sci. URSS (N.S.), 37:199-201.

References ii

[Memoli, 2011] Memoli, F. (2011).

Gromov wasserstein distances and the metric approach to object matching.

Foundations of Computational Mathematics, pages 1–71.

[Monge, 1781] Monge, G. (1781).

Mémoire sur la théorie des déblais et des remblais.

De l'Imprimerie Royale.

[Peyré et al., 2016] Peyré, G., Cuturi, M., and Solomon, J. (2016).

Gromov-wasserstein averaging of kernel and distance matrices.

In ICML, pages 2664-2672.

[Rubner et al., 2000] Rubner, Y., Tomasi, C., and Guibas, L. J. (2000).

The earth mover's distance as a metric for image retrieval.

International journal of computer vision, 40(2):99-121.

[Solomon et al., 2016] Solomon, J., Peyré, G., Kim, V. G., and Sra, S. (2016).

Entropic metric alignment for correspondence problems.

ACM Transactions on Graphics (TOG), 35(4):72.

References iii

[Thual et al., 2022] Thual, A., Tran, H., Zemskova, T., Courty, N., Flamary, R., Dehaene, S., and Thirion, B. (2022).

Aligning individual brains with fused unbalanced gromov-wasserstein.

In Neural Information Processing Systems (NeurIPS).

[Vayer et al., 2018] Vayer, T., Chapel, L., Flamary, R., Tavenard, R., and Courty, N. (2018).

Fused gromov-wasserstein distance for structured objects: theoretical foundations and mathematical properties.

[Vincent-Cuaz et al., 2022] Vincent-Cuaz, C., Flamary, R., Corneli, M., Vayer, T., and Courty, N. (2022).

Template based graph neural network with optimal transport distances.

In Neural Information Processing Systems (NeurIPS).

[Vincent-Cuaz et al., 2021] Vincent-Cuaz, C., Vayer, T., Flamary, R., Corneli, M., and Courty, N. (2021).

Online graph dictionary learning.

In International Conference on Machine Learning (ICML).

References iv

[Xu, 2020] Xu, H. (2020).

Gromov-wasserstein factorization models for graph clustering.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 6478–6485.