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Distributions are everywhere

Distributions are everywhere in machine learning
e Images, vision, graphics, Time series, text, genes, proteins.
e Many datum and datasets can be seen as distributions.
e Important questions:

e How to compare distributions?
e How to use the geometry of distributions?

e Optimal transport provides many tools that can answer those questions.

Illustration from the slides of Gabriel Peyré.
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Optimal transport

e Problem introduced by Gaspard Monge in his memoire [Monge, 1781].

e How to move mass while minimizing a cost (mass + cost)

e Monge formulation seeks for a mapping between two mass distribution.

e Reformulated by Leonid Kantorovich (1912-1986), Economy nobelist in 1975
e Focus on where the mass goes, allow splitting [Kantorovich, 1942].

e Applications originally for resource allocation problems
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Python Optimal Transport (PO)
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The toolbox

e Website/documentation: https://pythonot.github.io/

e Github: https://github.com/Python0T/POT

e Activity: 65 contributors, 2k stars, 1.2 M PyPl downloads, 600 citations.
e Features: OT solvers from 57 papers, 58 examples in gallery.

e Geek features: 95% test coverage, 100% PEP8 compliant.

e Deep learning features: Pytorch/Tensorflow/Jax support with autodiff.
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Optimal transport between discrete distributions

Distributions Matrix C OT matrix y

[ Source ps
I Target pe

Kantorovitch formulation : OT Linear Program
When 11, =37, a;idxs and py = Dot bidye

W;’(,u,s,ut) = min {(T,C)F = ZTMCM}

TE(ps,pmt) i
¥

where C is a cost matrix with ¢; ; = c(x},x5) = [|x{ — x[|” and the constraints are
T(pts, i) = {T e RT)™*™|T1,, =a,T 1,, = b}

e Solving the OT problem with network simplex is O(n®log(n)) for n = ns = n,.

e W, (s, p1e) is called the Wasserstein distance (EMD for p = 1). /13
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Optimal transport between discrete distributions

OT matrix with samples
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Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2
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® Target - 1

Entropic regularization [Cuturi, 2013]

Ty = argmin (T, C)r+ )\ZTi,j(log T;; — 1)
TE(ps,pt) i

e Regularization with the negative entropy of T'.

e Looses sparsity but smooth and strictly convex optimization problem.

e Can be solved efficiently with Sinkhorn’s matrix scaling algorithm with
ul® =1, K = exp(—C/)) and T = diag(u*)Kdiag(v*)

k) _ T (k-1) k) _ (k)
viV=bopK u , uw’/ =aoKv 6/13
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Wasserstein distance

Source distribution Divergences (scaled)
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Target distributions

Wasserstein distance
WiGun) =min [ =yl y)dxdy = Bk =517 (1)

Qs X

In this case we have c¢(x,y) = ||x — y|?

e A.K.A. Earth Mover’s Distance (W7) [Rubner et al., 2000].
e Useful between discrete distribution even without overlapping support.
e Smooth approximation can be computed with Sinkhorn [Cuturi, 2013].

e Wasserstein barycenter: fi = argmin,, >, w; W} (i, 1) 7/13
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Gromov-Wasserstein and extensions

ldx (z,a") = dy (y,4)
Inspired from Gabriel Peyré
GW for discrete distributions [Memoli, 2011]
GWh (s, ) =  min Di — D5y |PTi s Thea
o (s pie) Telion ) Z;;z | 7T

with s =3, a;idxs and py = Z], bj51§ and D, i = ||x] — x‘i’.||,D;’l = ij —x!||
e Distance between metric measured spaces : across different spaces.
e Search for an OT plan that preserve the pairwise relationships between samples.
e Entropy regularized GW proposed in [Peyré et al., 2016].

e Fused GW interpolates between Wass. and GW [Vayer et al., 2018].
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FGW for discrete distributions [Vayer et al., 2018]
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Tel(ps,pt) 4
gk

with 1, = 52, aides and = 5, b;8,0 and Dy = [xd — xi ], D, = [} — x{|
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Optimal transport for machine learning

Occurences of OT+ML in Google Scholar
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i WGAN : Arjovski et al.
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EMD : Rubner et al. inkhorn = Cutun
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Short history of OT for ML
e Proposed in in image processing by [Rubner et al., 2000] (EMD).
e Entropic regularized OT allows fast approximation [Cuturi, 2013].
e Deep learning/ stochastic optimization [Arjovsky et al., 2017].

e Generative models with diffusion/Schrddinger bridges. 9/13



Three aspects of optimal transport

Transporting with optimal transport

e Learn to map between distributions.
e Estimate a smooth mapping from discrete distributions.

e Applications in domain adaptation.

Divergence between histograms/empirical distributions

i e Use the ground metric to encode complex relations
\ between the bins of histograms for data fitting.
773 | 1NN e OT losses are non-parametric divergences between non
: :::}3:;}% overlapping distributions.
. e Used to train minimal Wasserstein estimators.
Divergence between structured objects and spaces

e Modeling of structured data and graphs as distribution.

° e OT losses (Wass. or (F)GW) measure similarity
@’7 between distributions/objects.

e OT find correspondance across spaces for adaptation.
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Python code available on GitHub:
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Python code available on GitHub:
https://github.com/Python0T/POT
e OT LP solver, Sinkhorn (stabilized, e—scaling, GPU)
e Domain adaptation with OT.

==

e Barycenters, Wasserstein unmixing.
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e Wasserstein Discriminant Analysis.

—

Tutorial on OT for ML: \
http://tinyurl.com/otml-isbi \

26026 6 00 o3 3 S E0 ¥

Papers available on my website:
https://remi.flamary.com/
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https://github.com/PythonOT/POT
http://tinyurl.com/otml-isbi
https://remi.flamary.com/

OTGame (OT Puzzle game on android)

1
'@ Standard game 1/9 Timer:19s New

https://play.google.com/store/apps/details?id=com.flamary.otgame 13/13


https://play.google.com/store/apps/details?id=com.flamary.otgame

References and supplementary material
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Gromov-Wasserstein between graphs
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Graph as a distribution (D, F, h)
e The positions x; are implicit and represented as the pairwise matrix D.

e Possible choices for D : Adjacency matrix, Laplacian, Shortest path, ...

XX

Shortest path
matrix

G x
X
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-—> 1
x
X X3
x

o

e The node features can be compared between graphs and stored in F.

e h; are the masses on the nodes of the graphs (uniform by default). 1513



Applications of (F)GW

Barycenter/averaging of labeled graphs [Vayer et al., 2018]

Noiseless graph Noisy graphs samples
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Shape matching between surfaces [Solomon et al., 2016, Thual et al., 2022]

Source Targets
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Applications of (F)GW

Barycenter/averaging of labeled graphs [Vayer et al., 2018]

Noiseless graph Noisy graphs samples Barycenter
Shape matching between surfaces [Solomon et al., 2016, Thual et al., 2022]

Training (cross-validated grid-search) Test  Baseline correlation Aligned correlation

300+ Source ) Target Source contrast k Source contrast k Actual
training contrasts subject S subject mapped on target mesh  target contrast k
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Graph Dictionary Learning

GDL unmixing w® with A = 0.001
\’ o Class1 . i .
Class 2 min d?,,‘(ﬂ( L4 A flju ).C) K %
7
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Class 3

Representation learning for graphs

e Learn a dictionary {6}1 of graph templates to describe a continuous manifold.

e The representation is learned by minimizing the (F)GW distance between the
graph reconstruction from the embedding in the dictionary.

Online Graph Dictionary learning : Linear model [Vincent-Cuaz et al., 2021].

C= > w;C;

GW Factorization : Nonlinear (GW barycenter) model [Xu, 2020].

e Dictionary for structured prediction with GW bary. [Brogat-Motte et al., 2022].
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Graph Dictionary Learning

Examples GDL unmixing w with A = 0.001
el \’ o Class1 e o
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Representation learning for graphs

e Learn a dictionary {61}z of graph templates to describe a continuous manifold.

e The representation is learned by minimizing the (F)GW distance between the
graph reconstruction from the embedding in the dictionary.

Online Graph Dictionary learning : Linear model [Vincent-Cuaz et al., 2021].

GW Factorization : Nonlinear (GW barycenter) model [Xu, 2020].
C = argming >, wiGW(C, C;)

e Dictionary for structured prediction with GW bary. [Brogat-Motte et al., 2022].
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Graph Dictionary Learning
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Representation learning for graphs

e Learn a dictionary {6}1 of graph templates to describe a continuous manifold.

e The representation is learned by minimizing the (F)GW distance between the
graph reconstruction from the embedding in the dictionary.

Online Graph Dictionary learning : Linear model [Vincent-Cuaz et al., 2021].

GW Factorization : Nonlinear (GW barycenter) model [Xu, 2020].

e Dictionary for structured prediction with GW bary. [Brogat-Motte et al., 2022].

f(x) = C(x) = argming Y, wi(x)GW (C, C)
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FGW for a pooling layer in GNN

TFGW layer
; - (C1,Fy,hy)
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Template based FGW layer (TFGW) [Vincent-Cuaz et al., 2022]

e Principle: represent a graph through its distances to learned templates.
e learnable parameters are illustrated in red above.
e New end-to-end GNN models for graph-level tasks.

e Sate-of-the-art (still!) on graph classification (1x#1, 3x#2 on paperwithcodeg./ s
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