SVM, apprentissage de noyaux et filtrage vaste marge Créatis 2011

Rémi Flamary, Alain Rakotomamonjy, Stéphane Canu

LITIS EA 4108, INSA-Université de Rouen 76800 Saint Etienne du Rouvray, France

10 janvier 2011

Table des Matières

Introduction aux SVM

Classification supervisée Problème d'optimisation Exemple

Apprentissage de noyau

Multiple Kernel Learning Apprentissage des paramètres

Filtrage vaste marge

Erreur de Bayes et filtrage Filtrage vaste marge Résultats Extension 2D

Plan

Introduction aux SVM

Classification supervisée Problème d'optimisation Exemple

Apprentissage de noyau

Multiple Kernel Learning Apprentissage des paramètres

Filtrage vaste marge

Erreur de Bayes et filtrage Filtrage vaste marge Résultats

Le Séparateur à Vaste Marge

Exemple : Détection de piétons

- Systèmes d'aide à la conduite.
- Tâche : apprendre à partir d'exemples pour discriminer des images contenant des piétons.

Qu'est ce que le SVM?

- Une famille d'algorithme d'apprentissage supervisé.
- Entrée : ensemble d'apprentissage

$$S = \{(x_1, y_1), \cdots, (x_n, y_n)\}\$$

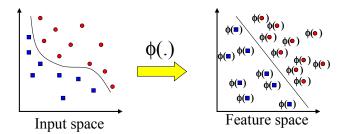
d'objets $x_i \in \mathcal{X}$ et leur classe connue $y_i \in \{+1, -1\}$.

Sortie : un classifieur $f: \mathcal{X} \longrightarrow \{+1, -1\}$ qui prédit la classe d'un objet $x \in \mathcal{X}$.

4 D > 4 A > 4 B > 4 B > 4 / 37 ▶ Projeter l'ensemble d'apprentissage dans un espace de grande dimension \mathcal{H} en utilisant la projection $\Phi(x)$. Dans l'espace \mathcal{H} , trouver un séparateur linéaire

$$f(x) = sign(\langle w, \Phi(x) \rangle_{\mathcal{H}} + b)$$

… qui maximise la marge m en classifiant, correctement les exemples



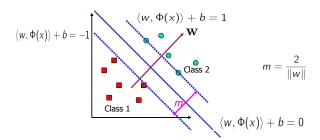
Rémi Flamary et al (LITIS) SVM et filtrage 10 janvier 2011

Principe des SVM

Projeter l'ensemble d'apprentissage dans un espace de grande dimension \mathcal{H} en utilisant la projection $\Phi(x)$. Dans l'espace \mathcal{H} , trouver un séparateur linéaire

$$f(x) = sign(\langle w, \Phi(x) \rangle_{\mathcal{H}} + b)$$

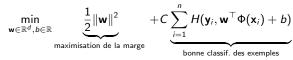
ightharpoonup ... qui maximise la marge m en classifiant, correctement les exemples.



Rémi Flamary et al (LITIS)

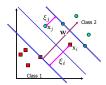
SVM et filtrage

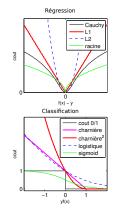
Une histoire de coût



$$H(y, f(x)) = max(0, 1 - y * f(x))$$

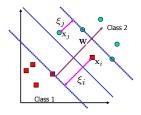
- ► H coût charnière ou hinge.
- Coût de classification non différentiable.





←ロト→団ト→車ト→車 夕久で

Le problème d'optimisation



Primal

Dual

$$\left\{ \begin{array}{ll} \min\limits_{\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}} & \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i \\ \text{avec} & y_i(\mathbf{w}^\top \Phi(\mathbf{x}_i) + b) \geq 1 \\ & i = 1, n \end{array} \right. \quad \left\{ \begin{array}{ll} \min\limits_{\alpha \in \mathbb{R}^n} & \frac{1}{2} \alpha^\top G \alpha - \mathbf{e}^\top \alpha \\ \text{avec} & \mathbf{y}^\top \alpha = 0 \\ \text{et} & 0 \leq \alpha_i \leq C \end{array} \right. \quad i = 1, n$$

$$egin{cases} \min_{lpha \in \mathbb{R}^n} & rac{1}{2} lpha^{ op} G lpha - \mathbf{e}^{ op} lpha \ & ext{avec} & \mathbf{y}^{ op} lpha = 0 \ & ext{et} & 0 \leq lpha_i \leq C \end{cases}$$

$$G \text{ matrice des influences}$$

$$(G_{i,j} = \mathbf{y}_i \mathbf{y}_j \langle \Phi(x_i), \Phi(x_j) \rangle)$$

$$f(\mathbf{x}) = sign(w^\top \Phi(x) + b) = sign(\sum_{i=1}^n \alpha_i \ y_i \langle \Phi(x_i), \Phi(x) \rangle + b)$$

Rémi Flamary et al (LITIS)

- Les données apparaissent uniquement sous la forme de produits scalaires $\langle \Phi(x_i), \Phi(x_j) \rangle$
- ▶ On oublie $\Phi(x)$, on utilise une fonction noyau k(x,y) qui agit comme un produit scalaire $\langle \phi(x_i), \phi(x_j) \rangle$.
- La fonction de décision est :

$$f(x) = sign(\sum_{j} \alpha_{j} \mathbf{y}_{i} K(x, x_{j}) + b)$$

Pas besoin d'exprimer $\Phi(x)$, les caractéristiques peuvent être de taille infinie.

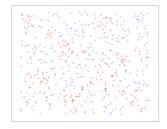
Noyaux classiques

- ▶ Linéaire (espace d'origine), $k(s, t) = s^{T}t$
- Polynômial, $k(s,t) = (s^{\top}t)^p$
- ► Gaussien, $k(s,t) = \exp\left(-\frac{r^2}{2\sigma^2}\right)$, r = ||s-t||

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ · 臺 · 釣९○

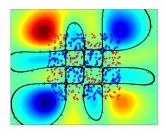
Exemple d'utilisation

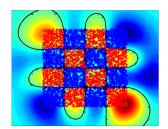
Problème de l'échiquier :



- Données séparables.
- ► Fortement non-linéaires.
- Très peu de vecteurs supports sélectionnés (en noir).

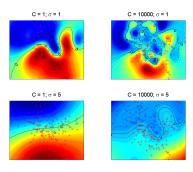
Résultats (500 et 5000 points d'apprentissage) :





10 janvier 2011 9 / 37

Conclusion sur les SVM



- Méthode efficace de discrimination (Compétitions, applications, ...).
- Fondement théorique solide (Théorie de Vapnik).
- Possibilité de gérer les problèmes non linéaires et la discrimination d'objets structurés à l'aide de noyaux.
- Peu de paramètres (C,noyau) mais leur choix est déterminant (habituellement validation croisée).

Plan

Introduction aux SVN

Classification supervisée Problème d'optimisation Exemple

Apprentissage de noyau

Multiple Kernel Learning Apprentissage des paramètres

Filtrage vaste marge

Erreur de Bayes et filtrage Filtrage vaste marge Résultats

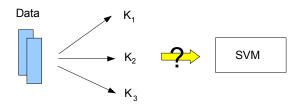
Apprentissage de noyau

Sélection de modèle

- Comment choisir le noyaux ? son/ses paramètre(s) ?
- Laisser l'algorithme apprendre une fonction de décision et apprendre le noyau.

Fusion de sources

- Les données peuvent être représentées selon différentes sources d'information
- Laisser l'algorithme choisir les meilleurs noyaux.



Principe de l'apprentissage de noyau Problème SVM Dual

$$J(k) = \begin{cases} & \min_{\alpha \in \mathbb{R}^n} & \frac{1}{2}\alpha^{\top}G\alpha - \mathbf{e}^{\top}\alpha \\ & \text{avec} & \mathbf{y}^{\top}\alpha = 0 \\ & \text{et} & 0 \leq \alpha_i \leq C \\ & G_{i,j} = \mathbf{y}_i \mathbf{y}_j k(x_i, x_j) \end{cases} i = 1, n$$

But

Apprendre un noyau maximisant la marge :

$$\min_{k} J(k)$$
 avec $k \in \mathcal{S}$

Ici $\mathcal S$ représente l'ensemble de recherche pour le noyau, il permet d'éviter le sur-apprentissage. Dans la littérature, les ensembles proposés sont :

- Une combinaison linéaire de noyaux
 [Lanckriet et al., 2004, Rakotomamonjy et al., 2008, Bach et al., 2004].
- ▶ Une multiplication de noyaux [Grandvalet and Canu, 2003, Varma and Babu, 2009].
- L'ensemble des noyaux Gaussiens

[Grandvalet and Canu, 2003, Chapelle et al., 2002].

Les méthodes à noyaux multiples (MKL) Problème : Détection de piétons

- Plusieurs types de caractéristiques.
- Gradient, couleur, forme, histogramme local de gradient.
- Plusieurs paramètres possibles pour l'extraction de caractéristiques.
- ⇒ Comment fusionner/sélectionner ces différentes sources?

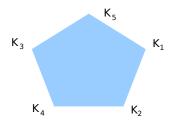
Apprentissage à noyaux multiples

- Un noyau par caractéristique/paramètre.
- Laisser l'algorithme sélectionner la combinaison linéaire optimale.

4日 > 4周 > 4 至 > 4 至 >

SimpleMKL [Rakotomamonjy et al., 2008]

Combinaison linéaire convexe de noyaux



$$k(x,y) = \sum_t d_t k_t(x,y)$$
 avec $d_t \geq 0$ et $\sum_t d_t = 1$

Problème de type simplex.

Avantages

- Parcimonie, sélection de noyaux.
- Formulation convexe du problème.
- Algorithme simple et efficace.

4□ > 4□ > 4 = > 4 = > = 90

Exemple pour un problème multiclasse : Caltech 101

- Problème de reconnaissance d'objets : 101 classes + fond
- ▶ 4 caractéristiques : 2 histogrammes (forme et gradient), 2 d'apparence (couleur,...)
- ▶ Données et noyaux disponibles (Visual Geometry Group, Oxford UK)

Rémi Flamary et al (LITIS) SVM et filtrage 10 janvier 2011 16 / 37

4 D > 4 P > 4 B > 4 B >

Résultats

- ▶ 3060 images, 15 images en apprentissage et 15 images en test
- Noyaux gaussiens χ^2 .
- ▶ 10 tirages, 12 noyaux.
- ▶ MKL un-contre-Un pour la sélection de modèle et de caractéristiques.

	Shape 1	Shape 2	App. 1	App. 2	MCMKL
Perf	69.8 ± 0.5	70.6 ± 0.6	71.6 ± 0.6	68.2 ± 0.8	76.6 ± 0.6

Autres méthodes d'apprentissage de noyaux

Noyaux Gaussiens

Noyau isotrope:

$$k(s,t) = \exp\left(-\frac{||s-t||^2}{2\sigma^2}\right)$$

 $\sigma \in \mathbb{R}$ largeur de bande du noyau.

Apprendre σ

► Par descente de gradient [Chapelle et al., 2002].

Noyau non isotrope :

$$k(s,t) = \exp\left(-\sum_{u} \frac{(s_u - t_u)^2}{\mathbf{b}_u^2}\right)$$

 $\mathbf{b} \in \mathbb{R}^d$ la pondération de chaque caractéristique.

Apprendre **b**

- Avec parcimonie [Grandvalet and Canu, 2003].
- ▶ Par descente de gradient [Varma and Babu, 2009].

⇒ Problèmes non convexes, nécessité de régulariser.

←□▶ ←□▶ ← □▶ ← □▶ → □
●

Conclusion sur l'apprentissage de noyaux

Multiple Kernel Learning

- Bonnes performances, sélection automatique des bons noyaux.
- Problème convexe, algorithmes efficaces [Rakotomamonjy et al., 2008, Chapelle and Rakotomamonjy, 2008].
- Parcimonie sur les noyaux.
- Application: fusion de données, sélection d'hyperparamètres, sélection de variables non-linéaire.

Apprentissage de paramètres

- Recherche continue des paramètres du noyau.
- Se fait généralement par descente de gradient [Chapelle et al., 2002, Varma and Babu, 2009].
- Problèmes non convexes, régularisation obligatoire.

4日 > 4周 > 4 至 > 4 至 >

Plan

Introduction aux SVN

Classification supervisée Problème d'optimisation Exemple

Apprentissage de noyau

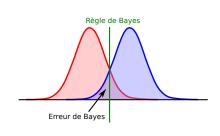
Multiple Kernel Learning Apprentissage des paramètres

Filtrage vaste marge

Erreur de Bayes et filtrage Filtrage vaste marge Résultats Extension 2D

Filtrage Vaste marge

Erreur de Bayes



- Si on connaît les distributions de probabilité de chaque classe.
- On peut obtenir le meilleur classifieur : le classifieur de Bayes.
- Celui-ci commet toujours une erreur : l'erreur de Bayes.
- Les SVM convergent vers ce classifieur, mais ils supposent que les échantillons sont IID (indépendants et identiquement distribués).

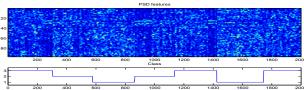
Si les échantillons ne sont pas IID?

- Dans certains cas, ca marche quand même.
- Possibilité d'utiliser cette information.

4 D > 4 P > 4 B > 4 B >

Exemples de données non IID

Signal temporel

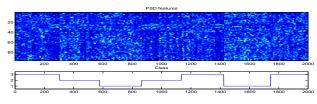


- Décodage d'état mental en BCI.
- Tâche de classification des échantillons temporels, segmentation du signal.

Image

- Détection de bâtiments en imagerie multispectrale.
- Tâche de classification de pixels, segmentation d'image.

Filtrage Vaste Marge



Exemple

Décodage continu d'état mental en BCI

- Le sujet pense au mouvement de sa main droite, gauche ou à un mot.
- ► Signal multidimensionnel fortement bruité (bruit additif, bruit convolutionnel).

On filtre!

- ► Soit filtrage fixé a priori.
- ► Soit on apprend le filtre.
- \Rightarrow Apprentissage d'un filtre qui sépare au mieux les classes : le filtrage vaste marge.

 $\begin{picture}(20,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){10$

Définitions

- ▶ $X \in \mathbb{R}^{N \times d}$ matrice des signaux, d canaux N échantillons.
- y contient les étiquettes.

Filtrage de X par F

$$\widetilde{X}_{i,j} = \sum_{m=1}^{f} F_{m,j} X_{i+1-m,j}$$
 (1)

 $F \in \mathbb{R}^{f \times d}$ matrice des filtres (un par canal), d filtres de taille f.

Noyaux

- $\blacktriangleright \ \, \mathsf{Lin\'eaire} : \widetilde{K}_{i,j}^F = \widetilde{X}_{i,.}^\top \widetilde{X}_{j,.}$
- $\blacktriangleright \ \, \mathsf{Gaussien} : \widetilde{K}^F_{i,j} = k(\widetilde{X}_{i,.},\widetilde{X}_{j,.}) = \exp\left(-\frac{||\widetilde{X}_{i,.}-\widetilde{X}_{j,.}||^2}{2\sigma_k^2}\right)$

Filtrage vaste marge

Principe

Apprendre le filtrage temporel et le classifieur de manière jointe.

Problème

$$\min_{g,F} \quad \frac{1}{2}||g||^2 + C\sum_{i=1}^n H(\mathbf{y}_i, g(\widetilde{X}_{i,.})) + \lambda\Omega(F)$$
 (2)

avec λ un paramètre de régularisation et $\Omega(\cdot)$ une fonction de régularisation pour FProblème non convexe, mais convexe par rapport à g pour un F fixe (SVM).

Solution

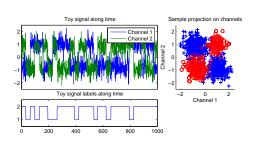
- Minimisation de la fonction objectif par descente de gradient.
- Régularisation Frobenius:

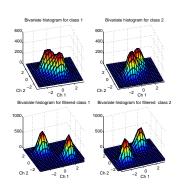
Norme mixte $\ell_1 - \ell_2$:

$$\Omega_2(F) = \sum_{u,v}^{f,d} F_{u,v}^2 \qquad (3) \qquad \qquad \Omega_{1-2}(F) = \sum_{v}^{d} \left(\sum_{u}^{f} F_{u,v}^2 \right)^{\frac{1}{2}} \quad (4)$$

4 D > 4 P > 4 B > 4 B > B SVM et filtrage 25 / 37 10 ianvier 2011

Données Jouet





Problème

- Non linéaire.
- Bruit Gaussien et convolutionnel (délai).
- Le filtrage sépare les classes.

Données BCI (Classification linéaire)

Method	Sub 1	Sub 2	Sub3	Avg
BCI Comp.	0.2040	0.2969	0.4398	0.3135
SVM	0.2877	0.4283	0.5209	0.4123
Filter-SVM				
$f = 8, n_0 = 0$	0.2337	0.3589	0.4937	0.3621
$f=20, n_0=0$	0.2021	0.2693	0.4381	0.3032
$f = 50, n_0 = 0$	0.1321	0.2382	0.4395	0.2699
Avg-SVM				
$f=100, n_0=50$	0.1544	0.2235	0.3870	0.2550
Filter-SVM				
$f = 100, n_0 = 50$	0.0537	0.1659	0.3859	0.2018

TABLE: Erreurs de test pour le Dataset BCI (BCI Compet. III).

Données

- 3 sujets, 96 canaux, densités spectrales de fréquence (PSD).
- ▶ 3 sessions d'apprentissage, 1 session de test.
- Sélection des paramètres par validation.

◆□ > →□ > → □ > → □ >

Visualisations BCI

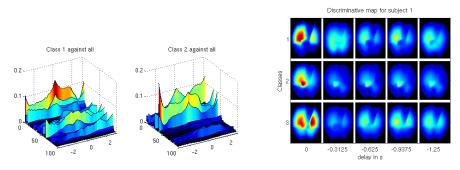


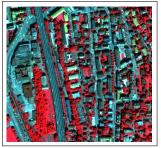
FIGURE: Filtres F pour différentes tâches de discrimination.

Visualisation des filtres

- ► Un filtre par canal.
- Carte de discrimination spatio/temporelle.

4日 > 4回 > 4 至 > 4 至 >

Extension 2D



Discrimination de pixels/ segmentation d'image

- ▶ Possibilité d'étendre l'approche à la discriminatiuon de pixels.
- ▶ Apprentissage d'un filtre de convolution 2D par canal (couleur).
- Images satellite HR de Zurich.

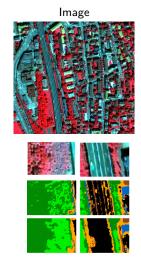
Method	Classes	Filter	Training	[%]OA	Карра
		size	Pixels		
SVM				75.11	0.685
AvgSVM	7	9	\sim 5000	83.68	0.796
WinSVM				82.98	0.785
KF-SVM				85.32	0.816
SVM				83.04	0.772
AvgSVM	6*	9	\sim 5000	89.48	0.860
WinSVM				91.71	0.889
KF-SVM				91.45	0.885

Résultats

- Résultats équivalents à la classification d'une fenêtre autour du pixel.
- Mais la classification se fait sur un pixel unique.
- Préprocessing optimal, on reste en faible dimension.

4 D > 4 A > 4 B > 4 B > B = 4900

Visualisation



SVM

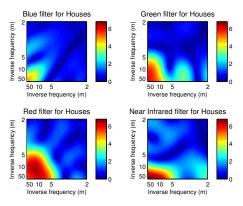
En image

- ► Frontières plus propres
- On détecte la classe rouge.

Visualisation du filtre (1)

Classe : Maisons, buildings résidentiels

Amplitude de la FFT du filtre pour différentes composantes.

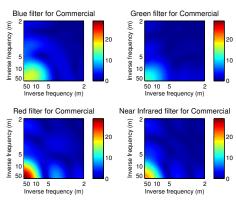


Passe-bas large bande (maisons petites).

Filter Visualization (2)

Classe: Buildings commerciaux

Amplitude de la FFT du filtre pour différentes composantes.



Passe-bas petite bande passante pour promouvoir les gros building..

Rémi Flamary et al (LITIS)

Conclusion sur le filtrage vaste marge

Conclusion

- Apprentissage d'un filtrage vaste marge.
- Discrimination d'échantillons.
- Sélection/pondération automatique des canaux.
- Visualisation des filtres.

Travaux futurs et en cours

- Gérer les données avec beaucoup de points d'apprentissage, sous échantillonnage.
- Nouveaux types de régularisation selon les connaissances a priori.

Biblio SVM: kernel-machines.org

- [Shawe-Taylor and Cristianini, 2004] John Shawe-Taylor and Nello Cristianini Kernel Methods for Pattern Analysis, Cambridge University Press, 2004
- [Schölkopf and Smola, 2001] Bernhard Schölkopf and Alex Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.
- ▶ [Hastie et al., 2001] Trevor Hastie, Robert Tibshirani and Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, springer, 2001
- [Bottou, 2007] Léon Bottou, Olivier Chapelle, Dennis DeCoste and Jason Weston Large-Scale Kernel Machines (Neural Information Processing, MIT press 2007
- [Chapelle et al., 2006] Olivier Chapelle, Bernhard Scholkopf and Alexander Zien, Semi-supervised Learning, MIT press 2006
- [Vapnik, 1995] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.
- [Wahba, 1990] Grace Wahba. Spline Models for Observational Data. SIAM CBMS-NSF Regional Conference Series in Applied Mathematics vol. 59, Philadelphia, 1990
- [Berlinet and Agnan, 2004] Alain Berlinet and Christine Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, Kluwer Academic Publishers, 2003
- [Atteia and Gaches, 1999] Marc Atteia et Jean Gaches, Approximation Hilbertienne Splines, Ondelettes, Fractales, PUG, 1999

4 D > 4 P > 4 B > 4 B > B Rémi Flamary et al (LITIS) SVM et filtrage 35 / 37 10 ianvier 2011

Bibliographie I

```
[Atteia and Gaches, 1999] Atteia, M. and Gaches, J. (1999).
```

Approximation hilbertienne : Splines, Ondelettes, Fractales.

Presses Universitaires de Grenoble.

[Bach et al., 2004] Bach, F., Lanckriet, G., and Jordan, M. (2004).

Multiple kernel learning, conic duality, and the SMO algorithm.

In Proceedings of the 21st International Conference on Machine Learning, pages 41-48.

[Berlinet and Agnan, 2004] Berlinet, A. and Agnan, C. T. (2004).

Reproducing Kernel Hilbert Spaces in Probability and Statistics.
Kluwer Academic Publishers.

[Bottou, 2007] Bottou, L. (2007).

Large-scale kernel machines.

Mit Pr.

[Chapelle and Rakotomamonjy, 2008] Chapelle, O. and Rakotomamonjy, A. (2008).

Second order optimization of kernel parameters.

In NIPS Workshop on Automatic Selection of Optimal Kernels.

[Chapelle et al., 2006] Chapelle, O., Scholkopf, B., and Zien, A., editors (2006).

Semi-Supervised Learning.

MIT Press.

[Chapelle et al., 2002] Chapelle, O., Vapnik, V., Bousquet, O., and Mukerjhee, S. (2002).

Choosing multiple parameters for SVM.

Machine Learning, 46(1-3):131-159.

[Grandvalet and Canu, 2003] Grandvalet, Y. and Canu, S. (2003).

Adaptive scaling for feature selection in svms.

In Advances in Neural Information Processing Systems, volume 15. MIT Press.

Bibliographie II

```
[Hastie et al., 2001] Hastie, T., Tibshirani, R., and Friedman, J. (2001).
   The Elements of Statistical Learning.
   Springer-Verlag
[Lanckriet et al., 2004] Lanckriet, G., Cristianini, N., El Ghaoui, L., Bartlett, P., and Jordan, M. (2004).
   Learning the kernel matrix with semi-definite programming.
   Journal of Machine Learning Research, 5:27-72.
[Rakotomamonjy et al., 2008] Rakotomamonjy, A., Bach, F., Grandvalet, Y., and Canu, S. (2008).
   SimpleMKL.
   Journal of Machine Learning Research, 9:2491-2521.
[Schölkopf and Smola, 2001] Schölkopf, B. and Smola, A. (2001).
   Learning with Kernels.
   MIT Press
[Shawe-Taylor and Cristianini, 2004] Shawe-Taylor, J. and Cristianini, N. (2004).
   Kernel methods for pattern analysis.
   Cambridge Univ Pr.
[Vapnik, 1995] Vapnik, V. (1995).
   The Nature of Statistical Learning Theory.
   Springer, N.Y.
[Varma and Babu, 2009] Varma, M. and Babu, B. (2009).
   More generality in efficient multiple kernel learning.
   In Proceedings of the 26th Annual International Conference on Machine Learning, pages 1065-1072. ACM.
[Wahba, 1990] Wahba, G. (1990).
```

Spline Models for Observational Data.

Series in Applied Mathematics, Vol. 59, SIAM,