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Objective

Approach

I Investigate the use of optimal transport to transport the samples from one
distribution to another.

I Promote graph regularization on the transported samples.

Applications:

Domain adaptation

Transport samples to the new domain
then train classifier.

Shape matching

Align meshes in computer graphics
using OT.
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Optimal transport for discrete distribution

Dataset and discrete distributions

µs =

ns∑
i=1

psi δxs
i
, µt =

nt∑
i=1

ptiδxt
i

(1)

I δxi is the Dirac at location xi ∈ Rd.

I psi and pti are probability masses.

I
∑ns

i=1 p
s
i =

∑nt
i=1 p

t
i = 1

I In this work psi = 1
ns

and pti = 1
nt

.

I Samples stored in matrices

Xs = [xs
1, . . . ,x

s
ns]> ∈ Rns×d

Xt = [xt
1, . . . ,x

t
nt]
> ∈ Rnt×d

Source samples xsi
Target samples xsi
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Regularized optimal transport

Transportation cost matric C Optimal matrix γ (LP)

Optimization problem

γ0 = arg min
γ∈P

〈γ,C〉F + λΩ(γ) (2)

where C is a transportation cost matrix, Ω(·) is a regularization term and

P =
{
γ ∈ (R+)ns×nt | γ1nt = µs,γ

T1ns = µt

}
For classical OT, the regularization term is Ω(·) = 0.
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Regularized optimal transport

Transportation cost matric C Optimal matrix γ (Sinkhorn)

Optimization problem

γ0 = arg min
γ∈P

〈γ,C〉F + λΩ(γ) (2)

where C is a transportation cost matrix, Ω(·) is a regularization term and

P =
{
γ ∈ (R+)ns×nt | γ1nt = µs,γ

T1ns = µt

}
For classical OT, the regularization term is Ω(·) = 0.
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Choice of the regularization

OTsinkhorn : Entropy based regularization (Cuturi [1])

I Information theory based regularization:

Ω(γ) =
∑
i,j

γi,j log(γi,j)

I Shrinkage effect on the transported samples for large regularization.

I Efficient solver but sometimes numerical problems.

LOT : Laplacian regularization (Ferradans et al. [2])

I Encode graph based knowledge in the optimization problem.

I Regularization focus on the displacement of the samples during interpolation.

I Can be expressed as a Linear Program (LP) or as a Quadratic Program (QP).

I Use interior point Frank-Wolfe algorithm to solve the QP.
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Transporting the discrete samples (1)
Interpolation t=0.5 for LP Interpolation t=0.5 for Sinkhorn

Interpolation between discrete distributions

I γ0 defines the distribution of the mass of each source sample onto the target
samples.

I Symmetric interpolation between source (t = 0) and target (t = 1):

µ(t) =

ns,nt∑
i=1,j=1

γi,jδ(1−t)xs
i+txt

j
(3)

The number of dirac in the intermediate 0 < t < 1 interpolation is the number of
nonzero coefficients in γ.
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Transporting the discrete samples (2)

Interpolation s→t for LP Interpolation s→t for Sinkhorn

Interpolation samples between distributions

I The original mass of each source sample is spread onto the target samples as
defined by γ0.

I Position of the transported samples:

X̂s = diag(γ01nt)
−1γ0Xt and X̂t = diag(γ>0 1ns)−1γ>0 Xs. (4)

I Transported sample at the center of mass of its transported distribution.

I For uniform distributions psi = 1
ns

we have X̂s = nsγ0Xt.
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Two flavors of Laplacian regularization

Sim. graph with S si,j>0 Sample displacement for LP Transported graph for LP

Similarity matrix Ss defines a graph of similarity between source samples.

Regularizing the sample displacement [2]

I Similar samples should have similar
displacement.

I Rigid displacements in clusters for
large regularization.

I LOTdisp.

Regularizing the sample position

I Similar samples should be transported
to similar positions.

I Shrinkage to the center of mass of
clusters for large regularization.

I Our contribution.

I LOTpos.
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Laplacian regularization for sample position

Sim. graph with S si,j>0 Transported graph for LP

Graph regularization for the sample position

I We want similar samples to have similar positions after transport:

Ωpos(γ) =
1

N2
s

∑
i,j

Ss
i,j‖x̂s

i − x̂s
j‖2

I With uniform distributions the transported sample x̂s
i is linear w.r.t. γ.

I Regularization term is quadratic w.r.t. γ.
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Laplacian regularization for sample position (2)

Reformulation of the regularization

I The regularization term can be expressed in matrix form as:

Ωpos(γ) =
1

N2
s

∑
i,j

Ss
i,j‖x̂s

i − x̂s
j‖2 = Tr(X>t γ

>LsγXt)

where Ls = diag(Ss1)− Ss is the Laplacian of the graph Ss.

I Gradient of the trace is easy to obtain during the optimization.

Symmetric regularization

I Regularization Ωpos(·) promotes only similarity in the transported source samples.

I We can also use a symmetric regularization of the form:

Ωpos(γ) =
1− α
N2

s

∑
i,j

Ss
i,j‖x̂s

i − x̂s
j‖2 +

α

N2
t

∑
i,j

St
i,j‖x̂t

i − x̂t
j‖2

where 0 ≤ α ≤ 1 is a term that weighs the importance of the source/target
regularizations.
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Example of LOTpos

Sim. graph with S si,j>0 Small λ Large λ

Discussion

I Similarity graph Ss obtained by a Gaussian kernel with threshold (left).

I The transported samples are illustrated in white for a small regularization
(center) and a large regularization (right).

I Clusters and local structures are promoted.

I Per-cluster shrinkage for large regularization.
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Laplacian regularization for sample displacement

Sim. graph with S si,j>0 Source sample displacement for LP

Graph regularization for the sample displacement

I Proposed in [2] for color transfer in images.

I x̂s
i − xs

i is the displacement of source sample xs
i during transport.

I We want similar samples to have similar displacements:

Ω(γ) =
1

N2
s

∑
i,j

Ss
i,j‖(x̂s

i − xs
i )− (x̂s

j − xs
j)‖2

I Quadratic regularization term.
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Laplacian regularization for sample displacement (2)

Sim. graph with S si,j>0 Source sample displacement for LP

Reformulation of the regularization term

I The regularization term can be expressed in matrix form as:

Ωdisp(γ) = Tr(X>t γ
>LsγXt) +

〈
γ,−Ns(Ls + L>s )XsX

>
t )

〉
F

+ cs

with cs = Tr(X>s LsXs) a constant w.r.t. γ.

I Similarly to Ωpos(·), one can use a symmetric regularization for the displacement.
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Example of LOTdisp

Sim. graph with S si,j>0 Small λ Large λ

Discussion

I Similarity graph Ss obtained by a Gaussian kernel with threshold (left).

I The transported samples displacements are illustrated in red for a small
regularization (center) and a large regularization (right).

I Clusters and local structures are promoted.

I Per-cluster rigid translation for large regularization.
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Optimization with Frank-Wolfe Algorithm

I Resulting optimization problem for both Laplacian regularization is a quadratic
Program (QP).

I [2] proposed to use a Frank-Wolfe Algorithm to solve the problem.

Algorithm for symmetric regularization of the sample position

0. Initialize k = 0 and γ0 ∈ P.

1. Compute the solution of the linear problem γ∗ = arg minγ∈P 〈γ,Ck〉F with

Ck = C + (1− α)(L + L>)γXtX
>
t + αXsX

>
s γ(L̃ + L̃>)

2. Find the optimal step 0 ≤ αk ≤ 1 with descent direction ∆γ = γ∗−γk such that

αk = −
1

2

〈∆γ,C〉F + λsTr(X>t ∆γ>(Ls + L>s )γkXt) + λtTr(X>s ∆γ(Lt + L>t )γk>Xs)

λsTr(X>t ∆γ>Ls∆γXt) + λtTr(X>s ∆γLt∆γ>Xs)

3. γk+1 ← γk + αk∆γ, set k ← k + 1 and go to step 1.
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Numerical experiments

Domain adaptation (DA)

I Classification problem (blue VS red).

I Classical simulated two-moons
problem.

I Increasing adaptation difficulty.

I Comparison with state of the art DA.

Non-rigid shape matching

I Register 3D shapes.

I Use the FAUST dataset[3].

I Preliminary matching results.

I Mean average error for transported
vertices.
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Domain adaptation problem

10◦ 20◦ 30◦ 40◦ 50◦ 70◦ 90◦

SVM (no adapt) 0.000 0.104 0.24 0.312 0.4 0.764 0.828
DASVM [4] 0.000 0.000 0.259 0.284 0.334 0.747 0.82
PBDA [5] 0.000 0.094 0.103 0.225 0.412 0.626 0.687

OT LP 0.000 0.000 0.031 0.102 0.166 0.292 0.441
OTsinkhorn 0.000 0.000 0.000 0.000 0.013 0.202 0.386

LOTpos 0.000 0.000 0.000 0.000 0.000 0.022 0.152
LOTdisp 0.000 0.000 0.000 0.000 0.000 0.067 0.384

Discussion

I Non-linear classification problem handled by a SVM with Gaussian kernel with
parameters set by k-fold validation.

I Regularization parameters set empirically.

I Mean error rate over 10 samplings reported in the table.

I Good performances of Optimal transport for domain adaptation.

I Better performance of LOTpos for this problem.
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Domain adaptation problem (2)

I Domain adaptation problem for different rotations.

I Decision function for LP transport (no regularization).

I Decision function for entropy based regularization (OTsinkhorn).

I Decision function for position based laplacian regularization (LOTpos).
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Shape matching problem

#1 #2 #3 #4 #5 #6

I We want to match different shapes from the FAUST dataset.

I Ground truth available (exact matching between watertight meshes).

I Performance measure: distance of the transported vertices to the true target
vertices (mean and max).

I 3D plot of the vertices assignments.
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Shape matching problem (2)

⇒

#1 #2 #3 #4 #5 #6

method 1 2 3 4 5 6

1
OT LP – 8.0 (54.5) 46.3 (141.2) 3.4 (57.6) 50.1 (160.9) 34.0 (125.3)
LOTpos – 7.5 (37.2) 44.0 (133.2) 3.7 (41.1) 46.5 (139.1 ) 31.1 (102.5)
LOTdisp – 7.1 (38.9) 44.3 (132.0) 3.5 (42.6) 47.9 (142.5) 31.9 (108.0)

I Mean error in cm (max errors in cm).

I Laplace regularization slightly better than classic OT.

I LOTpos and LOTdisp have similar performances in average.

I Encouraging preliminary results.
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Shape matching problem (2)

⇒

#3 #1 #2 #4 #5 #6

method 1 2 3 4 5 6

3
OT LP 51.3 (113.7) 41.3 (85.2) – 48.5 (113.2) 6.1 (50.3) 11.4 (49.4)
LOTpos 49.2 (108.7) 39.1 (78.7) – 46.4 (107.7) 6.0 (47.5) 11.0 (46.9)
LOTdisp 51.4 (109.7) 40.8 (80.0) – 48.7 (108.8) 5.7 (48.3) 10.8 (46.0)

I Mean error in cm (max errors in cm).

I Laplace regularization slightly better than classic OT.

I LOTpos and LOTdisp have similar performances in average.

I Encouraging preliminary results.
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Shape matching problem (3)

Two matching examples

I Lines show vertex displacement.

I Vertices are sorted : perfect assignment means a diagonal matrix.

I Left: #1⇒#2, Error =7.5 (37.2)

I Right: #3⇒#6, Error = 11.0 (46.9).
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Conclusion

Optimal transport with Laplacian regularization

I When data has a graph structure, regularize to keep it during the transport.

I Two flavors of Laplacian regularization (depends on the problem).

I Use Frank-Wolfe to solve the problem (efficient LP solvers, early stopping).

I Encouraging results on two applications.

Next steps

I More numerical experiments on real life datasets.

I Use label during graph computation for domain adaptation.

I Large scale optimization procedure.

I Find the regularization parameters automatically.
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