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Dynamical system & machine learning

Dynamical systems

• Dynamical systems are backbone models of temporally evolving phenomena.

• Continuous time: dx(t)
dt

= g(t, x(t))

• Discrete time: xt+1 = g(t, xt)

Machine learning for dynamical systems

• Classical approach: ODE/PDE/SDE design + parameter fittting

• Data-driven approach: learn dynamics from data (with physics-informed

constraints)
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Learning dynamical systems with

transfer operators



Transfert operator theory

Definition: Transfer Operator

Let us assume:

• A stochastic process: (Xt)t≥0 ∈ X

• A real-valued functional space: F ⊆ RX

Under some assumptions for t ≥ 0, their exists a linear transfer operator, also known

as Koopman operator, At : F → F that evolves an observable f : X → R for time t

via the conditional expectation :

[At(f)](x) := E[f(Xt) |X0 = x], x ∈ X , f ∈ F . (1)

Remarks

• Even if the dynamical system is non-linear, the transfert operator is linear.

• Time-homogeneous systems : At+s = AtAs

• Continuous time: At = exp(tL) with L the infinitesimal generator of the

semigroup (At)t≥0.

• Discrete time: A = A1 = L is enough to describe the dynamics with At = At
1.
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Spectral decomposition

Spectral decomposition
Assuming that F is a separable Hilbert space (typically L2

π(X ) with π the system’s

invariante measure) and L is a non defective operator with purely discrete spectrum.

Then L can be written as:

L =

∞∑
j=1

λjgj ⊗ fi, with Lfj=λjfj , L
∗gj=λjgj , and ⟨fj , gj⟩F=δi,j

Properties :

• Fast computation : At = exp(tL) =
∑∞

j=1 exp(tλj)gj ⊗ fi

• Can be used to model evolution of densities of probability distributions.

Matrix view for operators

L =

 | |
f1 · · · fr

| |


︸ ︷︷ ︸

F


λ1

. . .

λr


︸ ︷︷ ︸

Λ


− g1 −

...

− gr −


︸ ︷︷ ︸

H∗

with H∗F = Ir
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Spectral decomposition: Interpretation

Spectral Decomposition
The spectral decomposition of At = exp(tL) decouples the evolution of any arbitrary

observable f ∈ F as:

[Atf ](x) = E[f(Xt)|X0 = x] =
∑

j∈Ne
λjt⟨fj , gj⟩Ffj(x) =

∑
j∈Ne

τjtei2πωjtmf
j (x),

into temporal and static components.

• Temporal: eτjt (decay/growth) and ei2πωjt (oscillation)

• Static: mf
j (x) = ⟨fj , gj⟩Ffj(x)
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Learning transfer operators

Leraning operators from data

• Only trajectories of dynamical systems are observed. Neither the operator A nor

its domain F are known.

• Learn the operator L from data in a RKHS H ⊆ F with kernel

k(x, y) = ⟨ϕ(x), ϕ(y)⟩ and estimate a projected operator.

• Given data {xi, yi}Ni=1 (typically a trajectory with yi = xi+1) estimate L̂

minimizing the empirical risk:

min
G∈HS(X )

1

N

N∑
i=1

∥ϕ(yi)−Gϕ(xi)∥2H
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Transfer operators in practice

Classical approaches

• Dynamic Mode Decomposition (DMD) [Kutz et al., 2016, Brunton et al., 2022]

(Linear kernel but only for f = Id).

• Koopman operators with kernel methods [Williams et al., 2014, Kawahara, 2016].

• Reduced rank operator estimation [Kostic et al., 2022].

• Neural network approaches [Lusch et al., 2018, Kostic et al., 2024].

Open questions

• How to compare transfer operators ?

• Existing approaches:

• Hilbert-Schmidt and operator norms are too conservative.

• Martin distance [Martin, 2002]: pseudo-metric on ARMA models

• Binet-Cauchy kernel [Chaudhry and Vidal, 2013]: Martin distance extension to LDS

• Optimal Transport on spectrum (SOT)[Redman et al., 2024].

• Optimal transport on eigenspaces (GOT) [Antonini and Cavalletti, 2021].

• → Propose a novel geometry for transfer operators based on optimal transport.
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Spectral-Grassmann Wasserstein Metric

(SGOT)



SGOT intuition & assumptions

Assumptions

1. Time homogeneous Markovian dynamical systems {Lk}k∈[N ] (stationary).

2. Low rank operators: For all k, Lk has rank r ≪ N .

3. Common functional space H for all operators. There exists an RKHS H such

that for any operator, the estimation of its r-restriction, Tk = exp(Lk|r), is well

defined.

Low rank spectral decomposition

L =
∑
i∈[ℓ]

∑
j∈[mi]

λigi,j ⊗ fi,j =
∑
i

λiPi, ⟨fi,j , gi′,j′⟩H = δi,i′δj,j′ ,
∑
i

mi = r

The representatin above is unique up to :

• Permutation of the indexes of the decomposition i.

• Change of basis of each spectral projectors Pi (Grassmann manifold).

→ We need a metric invariant to these transformations : OT with proper geometry.
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Transfer operator as probability distribution

Low rank spectral decomposition

L =
∑
i∈[ℓ]

∑
j∈[mi]

λigi,j ⊗ fi,j =
∑
i

λiPi, ⟨fi,j , gi′,j′⟩H = δi,i′δj,j′ ,
∑
i

mi = r

• mi is the multiplicity of eigenvalue λi.

• Pi =
∑

j∈[mi]
gi,j ⊗ fi,j is the spectral projector associated to λi.

• Vi = span{gi,j ⊗ fi,j}j∈[mi] is the subspace of H associated to λi.

Property : distributional embedding

The operator L can be represented as a probability distribution over the product space

of eigenvalues and projectors:

µ(L) =
∑
i∈[ℓ]

mi

r
δ(λi,Vi)

The embedding above is injective. For fixed rank r those distributions can be

compared with discrete Optimal Transport
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Optimal transport with discrete distributions

Distributions

Source μs
Target μt

Matrix C OT matrix γ

OT Linear Program and Wasserstein distance
When µs =

∑n
i=1 aiδxs

i
and µt =

∑n
i=1 biδxt

i

W p
d,p(µs, µt) = min

T∈Π(µs,µt)

{
⟨T,D⟩F =

∑
i,j

Ti,jc
p
i,j

}

where D is a distance matrix with di,j = d(xs
i ,x

t
j) and the marginals constraints are

Π(µs, µt) =
{
T ∈ (R+)ns×nt |T1nt = a,TT1ns = b

}
Linear program with nsnt variables and ns + nt constraints, can be solved with

complexity O(r3 log r) if ns = nt = r.
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Optimal transport with discrete distributions

Distributions

Source μs
Target μt

Matrix C OT matrix with samples

OT Linear Program and Wasserstein distance
When µs =

∑n
i=1 aiδxs

i
and µt =

∑n
i=1 biδxt

i

W p
d,p(µs, µt) = min

T∈Π(µs,µt)

{
⟨T,D⟩F =

∑
i,j

Ti,jc
p
i,j

}

where D is a distance matrix with di,j = d(xs
i ,x

t
j) and the marginals constraints are

Π(µs, µt) =
{
T ∈ (R+)ns×nt |T1nt = a,TT1ns = b

}
Linear program with nsnt variables and ns + nt constraints, can be solved with

complexity O(r3 log r) if ns = nt = r.
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Grassmann Manifold

Proposition : Extension to infinite dimension space

Let H be a separable Hilbert space, and Gr(H) the set of vector subspaces of with

dimension at most r. With the application:

dG(V,V ′) = ∥PV − PV′∥H, ∀V,V ′ ∈ Gr(H)2

where PV is the orthogonal projector onto V, then (Gr(H), dG) is a metric space.

Example for 1D subspaces:

dG(V,V ′) =
√

2− 2⟨f, f ′⟩⟨g, g′⟩ with f, f ′, g, g′ normalized.
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SGOT definition

Spectral-Grassmann Optimal Transport (SGOT)

Let H be a separable C-Hilbert space and Sr(H) the set of non-defective operator on

H with rank at most r. For p ≥ 1 and η ∈ [0, 1], we define the Spectral-Grassmann

Wasserstein metric distance between two operators L,L′ ∈ Sr(H) as:

dpSGOT,p(L,L
′) = W p

cη,p(µ(L
′), µ(L′))

where the cost matrix is defined as:

cη((λ,V), (λ′,V ′)) = η|λs
i − λt

j |+ (1− η)dG(V,V ′)

Then the space (Sr(H), dSGOT,p) is a metric space.

Computation

• Pre-compute the cost matrix C with complexity O(n2r2).

• Solve the OT problem with complexity O(r3 log r) with network simplex.

• Overall complexity: O(n2r2 + r3log(r)).
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Metric estimator’s convergence bound

Existing bounds for operator estimation

Under kernel universality assumption, estimation of Koopman operators come with

spectral estimation guarantees [Kostic et al., 2023], specifically for the Reduced Rank

Regression (RRR) method [Kostic et al., 2022].

Theorem (simplified)

Suppose two dynamical systems with low rank operator projection L1, L2 ∈ Sr(H) and

their estimations L̂1, L̂2 ∈ Sr(H) from n samples with the RRR method

[Kostic et al., 2022]. Suppose α ∈ (1, 2), and β ∈ [0, 1] bounding the empirical

covariance. In the i.i.d setting, for any δ ∈ (0, 1), with probability 1− δ it holds:

|dSGOT,p(L̂1, L̂2)− dSGOT,p(L1, L2)| ≲ n
− α−1

2(α+β) ln(2δ−1)

Proof sketch: Use convergence of individual spectral elements [Kostic et al., 2023] and

use the identity OT plan for upper bound.
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SGOT Barycenter

SGOT Frechet mean

argmin
L∈Sr(H)

∑
k∈[N ]

γidSGOT (L,Lk)
2, (2)

where γ ∈ ΣN is a weight vector.

Numerical optimization of SGOT barycenter
We consider in the kernel case the operator Lθ representation parametrized by

θ ≜ (λ,α,β,x):

Lθ : h ∈ H 7→
∑

i∈[r]λi⟨κxαi, h⟩Hκxβi ∈ H

The barycenter is optimized by optimizing:

argmin
θ,P

∑
i∈[N ]

γi⟨Ci(θ),Pi⟩F s.t.

{
α∗Kβ = I K = {κ(xi, xj)}(i,j)∈[n]2

β∗
jKβj = 1, ∀j ∈ [r] Pi ∈ Π(µ(Lθ), µ(Li)), ∀i
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Numerical experiments



Comparison with other operator discrepancies
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Numerical setup

• Compare SGOT with operator, Hislbert-Schmidt Martin, SOT and GOT distances.

• Simple 1D oscillatory dynamical systems with varying frequency, damping, rank

and sampling frequency.

• SGOT has a unique minimum at the true parameters and capture well the

variations of the systems.

• SGOT is robust (invariant) to sampling frequency changes.
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SGOT for time series Classification
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Numerical setup

• 14 multivariate time series datasets from the UEA database [Ruiz et al., 2021].

• Each time series is modeled as a dynamical system (linear, kernel and MLP) and

its transfer operator is estimated with RRR [Kostic et al., 2022].

• 1-NN classification with SGOT, GOT, SOT, Martin and Hilbert-Schmidt.

• SGOT outperforms other operator distances on most datasets.

• SGOT computation time is comparable to best existing methods and much faster

than Hilbert-Schmidt and Operator norms.
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SGOT for time series Classification
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TSNE Embeddings of time series
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Interpolation for 1D system
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Numerical setup

• Consider two 1D oscillatory dynamical systems with different frequencies and

dampings.

• Estimate their transfer operators and compute their SGOT, HS and constrained

(low rank on manifold) HS barycenters for varying weights.

• Simulate the barycenter dynamical system, starting form the same initialization.

• SGOT barycenters interpolate well between the two systems while HS barycenters

fail to capture the change in dynamics.
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Interpolation of fluid dynamics
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Numerical setup

• Consider two fluid dynamics simulations with different shapes: circular with

symmetry and triangular without symmetry.

• Estimate their transfer operators and compute their SGOT barycenter.

• Recovered eigen functions and dynamics interpolate well between the two systems.

20 / 22



Conclusion
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Contributions

• A novel geometry for transfer operators based on optimal transport on the joint

spectral and Grassmann manifolds.

• Statistical guarantees for the SGOT metric estimation from data.

• Numerical experiments showing the interest of SGOT for time series classification

and barycenter computation.

Future works

• Comparison of baryenter with physics-based interpolation methods.

• Application on simulated nuclear fusion data (Tokam2D simulator).
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Thank you

Doc : https://pythonot.github.io/

Code : https://github.com/PythonOT/POT

• OT LP solver, Sinkhorn (stabilized, GPU)

• Sliced OT, OT on sphere, Gaussian and Gaussian Mixture OT.

• Gromov-Wasserstein, Unbalanced.

• Barycenters, Wasserstein unmixing.

• Differentiable solvers for Numpy/Pytorch/tensorflow/Cupy

Course on OT for ML:

https://tinyurl.com/otml-course

Papers available on my website:

https://remi.flamary.com/
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